Acta Applicandae Mathematicae

, Volume 164, Issue 1, pp 21–48 | Cite as

Analysis and Numerical Simulation of a Polymerization Model with Possible Agglomeration Process

  • Léon Matar TineEmail author
  • Babacar Lèye


In this paper we present an analytical and numerical modeling of a general polymerization process with possible lengthening by an agglomeration mechanism. The proposed model takes into account the 2D spatial diffusion of the monomers for the mass transfer between monomers and polymers. We investigate the well-posedness of this general polymerization model and propose an adequate numerical scheme based on a generalization of the anti-dissipative method developed in Goudon (Math. Models Methods Appl. Sci. 23:1177–1215, 2013).


Polymerization process Hyperbolic-parabolic coupling Smoluchowski operator Numerical simulation Anti-diffusive method Finite volume method 

Mathematics Subject Classification

58F15 58F17 53C35 



The authors gratefully acknowledge the “BQR” (Bonus Qualité Recherche) grant of University Lyon 1.

The authors thanks Thomas Lepoutre for his precious help and corrections.


  1. 1.
    Dubovskiı̌, P.B., Stewart, I.W.: Existence, uniqueness and mass conservation for the coagulation-fragmentation equation. Math. Methods Appl. Sci. 19(7), 571–591 (1996) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ball, J.M., Carr, J., Penrose, O.: The Becker-Döring cluster equations: basic properties and asymptotic behaviour of solutions. Commun. Math. Phys. 104(4), 657–692 (1986) zbMATHCrossRefGoogle Scholar
  3. 3.
    Calvez, V., Lenuzza, N., Doumic, M., Deslys, J.-P., Mouthon, F., Perthame, B.: Prion dynamic with size dependency-strain phenomena. J. Biol. Dyn. 4(1), 28–42 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Calvez, V., Lenuzza, N., Oelz, D., Deslys, J.-P., Laurent, P., Mouthon, F., Perthame, B.: Size distribution dependence of prion aggregates infectivity. Math. Biosci. 1, 88–99 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Carrillo, J.A., Goudon, T.: A numerical study on large-time asymptotics of the Lifshitz-Slyozov system. J. Sci. Comput. 18, 429–473 (2003) Google Scholar
  6. 6.
    Chen, M.K., Voorhees, P.W.: The dynamics of transient Ostwald ripening. Model. Simul. Mater. Sci. Eng. 1(5), 591–612 (1993) CrossRefGoogle Scholar
  7. 7.
    Collet, J-F., Goudon, T.: Lifshitz-Slyozov equations: the model with encounters. Transp. Theory Stat. Phys. 28(6), 545–573 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Collet, J-F., Goudon, T., Vasseur, A.: Some remarks on the large-time asymptotic of the Lifshitz-Slyozov equations. J. Stat. Phys. 108, 341–359 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Conlon, J.G.: On a diffusive version of the Lifschitz-Slyozov-Wagner equation. J. Nonlinear Sci. 20(4), 463–521 (2010) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Dadyburjor, D.B., Ruckenstein, E.: Kinetics of Ostwald ripening. J. Cryst. Growth 40(2), 279–290 (1977) CrossRefGoogle Scholar
  11. 11.
    Filbet, F., Laurençot, P.: Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation. Arch. Math. (Basel) 83(6), 558–567 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Filbet, F., Laurençot, P.: Numerical simulation of the Smoluchowski coagulation equation. SIAM J. Sci. Comput. 25, 2004–2028 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Goudon, T., Lagoutière, F., Tine, L.M.: The Lifshitz-Slyozov equations with space-diffusion of monomers. Kinet. Relat. Models 5, 325–355 (2012) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Goudon, T., Lagoutière, F., Tine, L.M.: Simulations of the Lifschitz-Slyosov equations: the role of coagulation terms in the asymptotic behavior. Math. Models Methods Appl. Sci. 23, 1177–1215 (2013) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Greer, M.L., Pujo-Menjouet, L., Webb, G.F.: A mathematical analysis of the dynamics of prion proliferation. J. Theor. Biol. 242(3), 598–606 (2006) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hariz, S., Collet, J.F.: A modified version of the Lifshitz-Slyozov model. Appl. Math. Lett. 12(1), 81–85 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Helal, M., Hingant, E., Pujo-Menjouet, L., Webb, G.F.: Alzheimer’s disease: analysis of a mathematical model incorporating the role of prions. J. Math. Biol. 69(5), 1207–1235 (2014) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Herrmann, M., Niethammer, B., Velàzquez, J.J.L.: Self-similar solutions for the LSW model with encounters. J. Differ. Equ. 247(8), 2282–2309 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Landau, L., Lifchitz, E., Pitaevskii, L.: Cinétique Physique. Cours de Physique Théorique, vol. 10. Mir, Moscow (1990) Google Scholar
  20. 20.
    Laurençot, P.: The Lifshitz-Slyozov equation with encounters. Math. Models Methods Appl. Sci. 11(04), 731–748 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Laurençot, P.: Weak solutions to the Lifschitz-Slyozov-Wagner equation. Indiana Univ. Math. J. 50, 1319–1346 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Laurençot, P.: The Lifschitz-Slyozov-Wagner equation with conserved total volume. SIAM J. Math. Anal. 34, 257–272 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Laurençot, P., Walker, C.: Well-posedness for a model of prion proliferation dynamics. J. Evol. Equ. 7(2), 241–264 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Laurençot, P.: On a class of continuous coagulation-fragmentation equations. J. Differ. Equ. 167(2), 245–274 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lifschitz, I.M., Slyozov, V.V.: The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961) CrossRefGoogle Scholar
  26. 26.
    Meerson, B.: Fluctuations provide strong selection in Ostwald ripening. Phys. Rev. E 60, 3072–3075 (1999) CrossRefGoogle Scholar
  27. 27.
    Niethammer, B.: A scaling limit of the Becker-Döring equations in the regime of small excess density. J. Nonlinear Sci. 14(5), 453–468 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Niethammer, B., Pego, R.L.: On the initial-value problem in the Lifshitz-Slyozov-Wagner theory of Ostwald ripening. SIAM J. Math. Anal. 31(3), 467–485 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Niethammer, B., Pego, R.L.: Well-posedness for measure transport in a family of nonlocal domain coarsening models. Indiana Univ. Math. J. 54(2), 499–530 (2005) MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Niethammer, B., Velázquez, J.J.L.: On screening induced fluctuations in Ostwald ripening. J. Stat. Phys. 130(3), 415–453 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Norris, J.R.: Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann. Appl. Probab. 9(1), 78–109 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Pierre, G.: The shape of the polymerization rate in the prion equation. Math. Comput. Model. 53(7–8), 1451–1456 (2011) MathSciNetzbMATHGoogle Scholar
  33. 33.
    Sagalovich, V.V., Slyozov, V.V.: Diffusive decomposition of solid solutions. Sov. Phys. Usp. 30, 23–44 (1987) CrossRefGoogle Scholar
  34. 34.
    Sakono, M., Zako, T.: Amyloid oligomers: formation and toxicity of a \(\beta \) oligomers. FEBS J. 277(6), 1348–1358 (2010) Google Scholar
  35. 35.
    Simon, J.: Compact sets in the space \({L}^{p}({O},{T}; {B})\). Ann. Mat. Pura Appl. 146(1), 65–96 (1986) Google Scholar
  36. 36.
    Léon Matar, S.T.IN.E.: Analyse mathématique et numérique de modèles de coagulation-fragmentation. PhD thesis, Université Lille 1 Sciences et Technologie - Université Gaston Berger (2011) Google Scholar
  37. 37.
    Vasseur, A., Poupaud, F., Collet, J.-F., Goudon, T.: The Becker–Döring system and its Lifshitz–Slyozov limit. SIAM J. Appl. Math. 62(5), 1488–1500 (2002) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, Dracula TeamInria Center Grenoble Rhône-AlpesVilleurbanne cedexFrance
  2. 2.International Institute for Water and Environmental Engineering (2iE)OuagadougouBurkina Faso

Personalised recommendations