Advertisement

Acta Applicandae Mathematicae

, Volume 160, Issue 1, pp 185–206 | Cite as

Moment Propagation of the Vlasov-Poisson System with a Radiation Term

  • Meixia Xiao
  • Xianwen ZhangEmail author
Article
  • 49 Downloads

Abstract

We investigate the dynamics of the Vlasov-Poisson system in the presence of radiation damping. A propagation result for velocity moments of order \(k>3\) is established in (Kunze and Rendall in Ann. Henri Poincaré 2:857–886, 2001). In this paper, we prove existence of global solutions propagating velocity and velocity-spatial moments of order \(k>2\) and establish an explicit polynomially growing in time bound on the moments.

Keywords

Vlasov-Poisson system Radiation damping Velocity moments Velocity-spatial moments Propagation 

Mathematics Subject Classification (2010)

35Q83 35L60 82C40 82D10 

References

  1. 1.
    Arsenév, A.A.: Global existence of a weak solution of Vlasov’s system of equations. USSR Comput. Math. Math. Phys. 15, 131–143 (1975) CrossRefGoogle Scholar
  2. 2.
    Bauer, S.: A non-relativistic model of plasma physics containing a radiation reaction term. Kinet. Relat. Models 11, 25–42 (2018) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Castella, F.: Propagation of space moments in the Vlasov-Poisson equation and further results. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 16, 503–533 (1999) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, J., Zhang, X.: Global existence of small amplitude solutions to the Vlasov-Poisson system with radiation damping. Int. J. Math. 26, 1550098 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, J., Zhang, X., Gao, R.: Existence, uniqueness and asymptotic behavior for the Vlasov-Poisson system with radiation damping. Acta Math. Sin. Engl. Ser. 33, 635–656 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Z., Zhang, X.: Sub-linear estimate of large velocities in a collisionless plasma. Commun. Math. Sci. 12, 279–291 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Z., Zhang, X.: Global existence to the Vlasov-Poisson system and propagation of moments without assumption of finite kinetic energy. Commun. Math. Phys. 343, 851–879 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gasser, I., Jabin, P.E., Perthame, B.: Regularity and propagation of moments in some nonlinear Vlasov systems. Proc. R. Soc. Edinb., Sect. A 130, 1259–1273 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Glassey, R.T.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996) CrossRefzbMATHGoogle Scholar
  10. 10.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, I general theory. Math. Methods Appl. Sci. 3, 229–248 (1981) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Horst, E.: On the classical solutions of the initial value problem for the unmodified non-linear Vlasov equation, II special cases. Math. Methods Appl. Sci. 4, 19–32 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Horst, E., Hunze, R.: Weak solutions of the initial value problem for the unmodified non-linear Vlasov equation. Math. Methods Appl. Sci. 6, 262–279 (1984) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Horst, E.: On the asymptotic growth of the solutions of the Vlasov-Poisson system. Math. Methods Appl. Sci. 16, 75–85 (1993) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Illner, R., Neunzert, H.: An existence theorem for the unmodified Vlasov equation. Math. Methods Appl. Sci. 1, 530–554 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Illner, R., Rein, G.: Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case. Math. Methods Appl. Sci. 19, 1409–1413 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kunze, M., Rendall, A.D.: The Vlasov-Poisson system with radiation damping. Ann. Henri Poincaré 2, 857–886 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kunze, M., Rendall, A.D.: Simplified models of electromagnetic and gravitational radiation damping. Class. Quantum Gravity 18, 3573–3587 (2001) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105, 415–430 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86, 68–79 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Pallard, C.: Large velocities in a collisionless plasma. J. Differ. Equ. 252, 2864–2876 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pallard, C.: Moment propagation for weak solutions to the Vlasov-Poisson system. Commun. Partial Differ. Equ. 37, 1273–1285 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Pallard, C.: Space moments of the Vlasov-Poisson system: propagation and regularity. SIAM J. Math. Anal. 46, 1754–1770 (2014) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Perthame, B.: Time decay, propagation of low moments and dispersive effects for kinetic equations. Commun. Partial Differ. Equ. 21, 659–686 (1996) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Pfaffelmoser, K.: Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95, 281–303 (1992) MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Rein, G.: Collisionless kinetic equation from astrophysics the Vlasov-Poisson system. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 383–476. Elsevier, Amsterdam (2007) CrossRefGoogle Scholar
  26. 26.
    Schaeffer, J.: Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions. Commun. Partial Differ. Equ. 16, 1313–1335 (1991) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Xiao, M., Zhang, X.: On global solutions to the Vlasov-Poisson system with radiation damping. Kinet. Relat. Models 11, 1183–1209 (2018) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations