Advertisement

Acta Applicandae Mathematicae

, Volume 160, Issue 1, pp 169–184 | Cite as

Some Spreading Properties of a Monotone Non-autonomous Parabolic Equation in a Periodic Cylinder

  • Yanling TianEmail author
Article
  • 41 Downloads

Abstract

This paper is concerned with the asymptotic spreading speed and the periodic traveling wave fronts for a monotone non-autonomous parabolic equation in a cylinder. Main results concerning the two topics are obtained by virtue of some autonomous auxiliary equations. It turns out that the asymptotic spreading speed is the minimal wave speed of such periodic traveling wave front.

Keywords

Traveling wave front Asymptotic spreading speed Super and sub solutions Comparison principle Iteration method 

Mathematics Subject Classification

35K55 35B51 35B40 92D25 

References

  1. 1.
    Aronson, D.G.: The asymptotic speed of propagation of a simple epidemic. In: Nonlinear Diffusion. Research Notes in Mathematics. Pitman, London (1997) Google Scholar
  2. 2.
    Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Berestycki, H., Hamel, F., Rossi, L.: Liouville-type results for semilinear elliptic equations in unbounded domains. Annali di Mathematica Pura ed Applicate (2007) Google Scholar
  4. 4.
    Diekmann, O.: Run for your life, a note on the asymptotic speed of propagation of an epidemic. J. Differ. Equ. 33, 58–73 (1979) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fisher, R.A.: The wave of advance of advantageous genes. Annu. Eugen. 7, 335–369 (1937) zbMATHGoogle Scholar
  6. 6.
    Guo, J.-S., Hamel, F.: Propagation and blocking in periodically hostile environments. Arch. Ration. Mech. Anal. 204, 945–975 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Hamel, F.: Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity. J. Math. Pures Appl. 89, 355–399 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Kolmogorov, A.N., Petrowsky, I.G., Piscounov, N.S.: Etude de lequation de la diffusion aveccroissance de la quantite de matiere et son application a un problem biologique. Bull. Univ. dEtat Mosc., Ser. Intern. A 1, 1–26 (1937) Google Scholar
  9. 9.
    Liang, X., Zhao, X.Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Murray, J.D.: Mathematical Biology, vols. I & II. Springer, New York (2002) zbMATHGoogle Scholar
  11. 11.
    Schaff, K.W.: Asymptotic behavior and traveling wave solutions for parabolic functional differential equations. Trans. Am. Math. Soc. 302, 587–614 (1987) MathSciNetGoogle Scholar
  12. 12.
    Tian, Y.L., Liu, Z.R.: Traveling wave fronts and minimal wave speed for a delayed non-autonomous Fisher equation without quasimonotonicity. Appl. Math. Lett. 49, 91–99 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Tian, Y.L., Weng, P.X.: Asymptotic patterns of a reaction-diffusion equation with nonlinear-nonlocal functional response. IMA J. Appl. Math. 78, 70–101 (2013) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Volpert, A.I., Volpert, A.V., Volpert, A.V.: Traveling Wave Solutions of Parabolic Systems. Translation of Mathematical Monographs, vol. 140. Am. Math. Soc., Providence (1994) zbMATHGoogle Scholar
  15. 15.
    Wang, M.X.: Nonlinear Elliptic Equation. Science Press, Beijing (2010) Google Scholar
  16. 16.
    Weinberger, H.F.: Long-time behavior of a class of biological models. SIAM J. Math. Anal. 13, 353–396 (1982) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Weinberger, H.F.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002) MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Mathematics, South China Normal UniversityGuangdong Provincial Engineering Technology Research Center for Data ScienceGuangzhouP.R. China

Personalised recommendations