Skip to main content
Log in

A Solution-Generating Method in Einstein-Scalar Gravity

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We present a method to generate static, spherically symmetric, solutions of Einstein gravity in \(d+2\) dimensions minimally coupled to a real scalar field with a self-interacting potential. The solutions can be fully parametrised by a single function, whose behaviour encodes all the information about the local and global behaviour of the spacetime. We give several explicit applications of our solution-generating method that describe black holes, naked singularities and solitonic configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Riccati equation is an ordinary differential equation in the form \(y'+p_{1}y+p_{2}y^{2}=q\) where \(p_{1}\), \(p_{2}\neq0\) and \(q\neq0\) are functions of the independent variable.

References

  1. Fisher, I.Z.: Scalar mesostatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 18, 636–640 (1948)

    Google Scholar 

  2. Buchdahl, H.A.: Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev. 115, 1325–1328 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  3. Janis, A.I., Newman, E.T., Winicour, J.: Reality of the Schwarzschild singularity. Phys. Rev. Lett. 20, 878–880 (1968)

    Article  Google Scholar 

  4. Wyman, M.: Static spherically symmetric scalar fields in general relativity. Phys. Rev. D 24, 839–841 (1981)

    Article  MathSciNet  Google Scholar 

  5. Bechmann, O., Lechtenfeld, O.: Exact black-hole solution with self-interacting scalar field. Class. Quantum Gravity 12, 1473–1482 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dennhardt, H., Lechtenfeld, O.: Scalar deformations of Schwarzschild holes and their stability. Int. J. Mod. Phys. A 13, 741–764 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bronnikov, K.A., Shikin, G.N.: Spherically symmetric scalar vacuum: no-go theorems, black holes and solitons. Gravit. Cosmol. 8, 107–116 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Bronnikov, K.A., Fabris, J.C.: Regular phantom black holes. Phys. Rev. Lett. 96, 251101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bronnikov, K.A., Melnikov, V.N., Dehnen, H.: Regular black holes and black universes. Gen. Relativ. Gravit. 39, 973–987 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bronnikov, K.A., Chernakova, M.S.: Charged black holes and unusual wormholes in scalar-tensor gravity. Gravit. Cosmol. 13, 51–55 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Nikonov, V.V., Tchemarina, J.V., Tsirulev, A.N.: A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations. Class. Quantum Gravity 25, 138001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Azreg-Aïnou, M.: Selection criteria for two-parameter solutions to scalar-tensor gravity. Gen. Relativ. Gravit. 42, 1427–1456 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bekenstein, J.D.: Nonexistence of baryon number for static black holes. Phys. Rev. D 5, 1239–1246 (1972)

    Article  MathSciNet  Google Scholar 

  14. Bekenstein, J.D.: Novel ‘no scalar hair’ theorem for black holes. Phys. Rev. D 51, R6608–R6611 (1995)

    Article  MathSciNet  Google Scholar 

  15. Mayo, A.E., Bekenstein, J.D.: No hair for spherical black holes: charged and nonminimally coupled scalar field with selfinteraction. Phys. Rev. D 54, 5059–5069 (1996)

    Article  MathSciNet  Google Scholar 

  16. Sudarsky, D.: A Simple proof of a no-hair theorem in Einstein-Higgs theory. Class. Quantum Gravity 12, 579–584 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Torii, T., Maeda, K., Narita, M.: Scalar hair on the black hole in asymptotically anti-de Sitter space-time. Phys. Rev. D 64, 044007 (2001)

    Article  MathSciNet  Google Scholar 

  18. Hertog, T.: Towards a novel no-hair theorem for black holes. Phys. Rev. D 74, 084008 (2006)

    Article  MathSciNet  Google Scholar 

  19. Herdeiro, C.A.R., Radu, E.: Kerr black holes with scalar hair. Phys. Rev. Lett. 112, 221101 (2014)

    Article  Google Scholar 

  20. Herdeiro, C.A.R., Radu, E.: Asymptotically flat black holes with scalar hair: a review. In: Herdeiro, C.A.R., Cardoso, V., Lemos, J.P.S., Mena, F.C. (eds.) Proceedings of the 7th Black Holes Workshop, Aveiro, Portugal, Dec. 18–19, 2014. Int. J. Mod. Phys. D, vol. 24, p. 1542014 (2014)

    Google Scholar 

  21. Cadoni, M., Mignemi, S., Serra, M.: Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Phys. Rev. D 84, 084046 (2011)

    Article  Google Scholar 

  22. Cadoni, M., Serra, M., Mignemi, S.: Black brane solutions and their solitonic extremal limit in Einstein-scalar gravity. Phys. Rev. D 85, 086001 (2012)

    Article  Google Scholar 

  23. Cadoni, M., Mignemi, S.: Phase transition and hyperscaling violation for scalar black branes. J. High Energy Phys. 06, 056 (2012)

    Article  MATH  Google Scholar 

  24. Cadoni, M., Serra, M.: Hyperscaling violation for scalar black branes in arbitrary dimensions. J. High Energy Phys. 11, 136 (2012)

    Article  Google Scholar 

  25. Cadoni, M., Franzin, E.: Asymptotically flat black holes sourced by a massless scalar field. Phys. Rev. D 91, 104011 (2015)

    Article  MathSciNet  Google Scholar 

  26. Cadoni, M., Franzin, E., Serra, M.: Brane solutions sourced by a scalar with vanishing potential and classification of scalar branes. J. High Energy Phys. 01, 125 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Solovyev, D.A., Tsirulev, A.N.: General properties and exact models of static self-gravitating scalar field configurations. Class. Quantum Gravity 29, 055013 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Franzin, E., Cadoni, M., Tuveri, M.: Sine-Gordon solitonic scalar stars and black holes. Phys. Rev. D 97, 124018 (2018)

    Article  MathSciNet  Google Scholar 

  29. Gaeta, G., Reiss, C., Peyrard, M., Dauxois, T.: Simple models of non-linear DNA dynamics. Riv. Nuovo Cimento 17, 1–48 (1994)

    Article  Google Scholar 

  30. Barone, A., Paternò, G.: Physics and Applications of the Josephson Effect. Wiley, New York (1982)

    Book  Google Scholar 

  31. Cuevas-Maraver, J., Kevrekidis, P., Williams, F. (eds.): The Sine-Gordon Model and Its Applications. Springer, Heidelberg (2014)

    MATH  Google Scholar 

  32. Gegenberg, J., Kunstatter, G.: Solitons and black holes. Phys. Lett. B 413, 274–280 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Cadoni, M.: 2-D extremal black holes as solitons. Phys. Rev. D 58, 104001 (1998)

    Article  MathSciNet  Google Scholar 

  34. Bronnikov, K.A.: Spherically symmetric false vacuum: no-go theorems and global structure. Phys. Rev. D 64, 064013 (2001)

    Article  Google Scholar 

  35. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  36. Carminati, J., McLenaghan, R.G.: Algebraic invariants of the Riemann tensor in a four-dimensional Lorentzian space. J. Math. Phys. 32, 3135 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Anabalón, A., Oliva, J.: Exact hairy black holes and their modification to the universal law of gravitation. Phys. Rev. D 86, 107501 (2012)

    Article  Google Scholar 

  38. Anabalón, A., Deruelle, N.: On the mechanical stability of asymptotically flat black holes with minimally coupled scalar hair. Phys. Rev. D 88, 064011 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

EF is partially supported by the Spanish MINECO under projects FPA2016-76005-C2-C-P and MDM-2014-0369 of ICCUB (Unidad de Excelencia “María de Maeztu”), and by AGAUR grant 2017-SGR-754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Cadoni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadoni, M., Franzin, E., Masella, F. et al. A Solution-Generating Method in Einstein-Scalar Gravity. Acta Appl Math 162, 33–45 (2019). https://doi.org/10.1007/s10440-018-00232-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-018-00232-2

Keywords

Navigation