A Mixed Variational Formulation of a Contact Problem with Wear

  • Mircea Sofonea
  • Flavius Pătrulescu
  • Ahmad Ramadan
Article
  • 34 Downloads

Abstract

We consider a mathematical model which describes the sliding frictional contact between a viscoplastic body and an obstacle, the so-called foundation. The process is quasistatic, the material’s behavior is described with a viscoplastic constitutive law with internal state variable and the contact is modelled with normal compliance and unilateral constraint. The wear of the contact surfaces is taken into account, and is modelled with a version of Archard’s law. We derive a mixed variational formulation of the problem which involve implicit history-dependent operators. Then, we prove the unique weak solvability of the contact model. The proof is based on a fixed point argument proved in Sofonea et al. (Commun. Pure Appl. Anal. 7:645–658, 2008), combined with a recent abstract existence and uniqueness result for mixed variational problems, obtained in Sofonea and Matei (J. Glob. Optim. 61:591–614, 2014).

Keywords

viscoplastic material Frictional contact Normal compliance Unilateral constraint Wear Mixed variational formulation History-dependent operator Weak solution 

Mathematics Subject Classification

74M15 74G25 74G30 49J40 

References

  1. 1.
    Archard, J.F., Hirst, W.: Wear of metals under unlubricated conditions. Proc. R. Soc. Lond. Ser. A 236, 3–55 (1956) CrossRefGoogle Scholar
  2. 2.
    Barboteu, M., Matei, A., Sofonea, M.: On the behavior of the solution of a viscoplastic contact problem. Q. Appl. Math. 72, 625–647 (2014) MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Céa, J.: Optimization. Théorie et Algorithmes. Dunod, Paris (1971) MATHGoogle Scholar
  4. 4.
    Chudzikiewicz, A., Myśliński, A.: Thermoelastic wheel-rail contact problem with elastic graded-materials. Wear 271, 417–425 (2011) CrossRefGoogle Scholar
  5. 5.
    Cristescu, N., Suliciu, I.: Viscoplasticity. Nijhoff/Editura Tehnică, Bucharest (1982) MATHGoogle Scholar
  6. 6.
    Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics. Springer, Berlin (1976) CrossRefMATHGoogle Scholar
  7. 7.
    Eck, C., Jarušek, J., Krbeč, M.: Unilateral Contact Problems: Variational Methods and Existence Theorems. Pure and Applied Mathematics, vol. 270. Chapman/CRC Press, New York (2005) MATHGoogle Scholar
  8. 8.
    Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. Classics in Applied Mathematics, vol. 28. SIAM, Philadelphia (1999) CrossRefMATHGoogle Scholar
  9. 9.
    Glodež, S., Ren, Z., Flašker, J.: Simulation of surface pitting due to contact loading. Int. J. Numer. Methods Eng. 43, 33–50 (1998) CrossRefMATHGoogle Scholar
  10. 10.
    Goryacheva, I.G.: Contact Mechanics in Tribology. Kluwer, Dordrecht (1988) MATHGoogle Scholar
  11. 11.
    Gu, R.J., Shillor, M.: Thermal and wear analysis of an elastic beam in sliding contact. Int. J. Solids Struct. 38, 2323–2333 (2001) CrossRefMATHGoogle Scholar
  12. 12.
    Gu, R.J., Kuttler, K.L., Shillor, M.: Frictional wear of a thermoelastic beam. J. Math. Anal. Appl. 242, 212–236 (2000) MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. Studies in Advanced Mathematics, vol. 30. Am. Math. Soc./International Press, Providence/Somerville (2002) MATHGoogle Scholar
  14. 14.
    Haslinger, J., Hlaváček, I., Nečas, J.: Numerical methods for unilateral problems in solid mechanics. In: Ciarlet, P.G., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. IV, pp. 313–485. North-Holland, Amsterdam (1996) Google Scholar
  15. 15.
    Hild, P., Renard, Y.: A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 115, 101–129 (2010) MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hüeber, S., Matei, A., Wohlmuth, B.: Efficient algorithms for problems with friction. SIAM J. Sci. Comput. 29, 70–92 (2007) MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ionescu, I.R., Sofonea, M.: Functional and Numerical Methods in Viscoplasticity. Oxford Univ. Press, Oxford (1993) MATHGoogle Scholar
  18. 18.
    Lions, J.-L., Glowinski, R., Trémolières, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981) MATHGoogle Scholar
  19. 19.
    Matei, A.: On the solvability of mixed variational problems with solution-dependent sets of Lagrange multipliers. Proc. R. Soc. Edinb., Sect. A, Math. 143, 1047–1059 (2013) MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Matei, A.: An evolutionary mixed variational problem arising from frictional contact mechanics. Math. Mech. Solids 19, 223–239 (2014) MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Matei, A., Ciurcea, R.: Contact problems for nonlinearity elastic materials: weak solvability involving dual Lagrange multipliers. ANZIAM J. 52, 160–178 (2010) MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Matei, A., Ciurcea, R.: Weak solutions for contact problems involving viscoelastic materials with long memory. Math. Mech. Solids 16, 393–405 (2011) MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhauser, Boston (1985) CrossRefMATHGoogle Scholar
  24. 24.
    Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993) CrossRefMATHGoogle Scholar
  25. 25.
    Rabinowiz, E.: Friction and Wear of Materials, 2nd edn. Wiley, New York (1995) Google Scholar
  26. 26.
    Rochdi, M., Shillor, M., Sofonea, M.: Quasistatic viscoelastic contact with normal compliance and friction. J. Elast. 51, 105–126 (1998) MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Rodriguez-Arós, A., Viaño, J.M., Sofonea, M.: Asymptotic derivation of quasistatic frictional contact models with wear for elastic rods. J. Math. Anal. Appl. 401, 641–653 (2013) MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Rojek, J., Telega, J.J., Stupkiewicz, S.: Contact problems with friction, adhesion and wear in orthopaedic biomechanics, II: numerical implementation and application to implanted knee joints. J. Theor. Appl. Mech. 39, 679–706 (2001) MATHGoogle Scholar
  29. 29.
    Shillor, M., Sofonea, M., Telega, J.J.: Models and Analysis of Quasistatic Contact. Lecture Notes in Physics, vol. 655. Springer, Berlin (2004) MATHGoogle Scholar
  30. 30.
    Sofonea, M., Matei, A.: History-dependent quasivariational inequalities arising in contact mechanics. Eur. J. Appl. Math. 22, 471–491 (2011) CrossRefMATHGoogle Scholar
  31. 31.
    Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics. London Mathematical Society Lecture Note Series, vol. 398. Cambridge Univ. Press, Cambridge (2012) CrossRefMATHGoogle Scholar
  32. 32.
    Sofonea, M., Matei, A.: History-dependent mixed variational problems in contact mechanics. J. Glob. Optim. 61, 591–614 (2015) MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Sofonea, M., Avramescu, C., Matei, A.: A fixed point result with applications in the study of viscoplastic frictionless contact problems. Commun. Pure Appl. Anal. 7, 645–658 (2008) MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Sofonea, M., Pătrulescu, F., Souleiman, Y.: Analysis of a contact problem with wear and unilateral constraint. Appl. Anal. 95, 2602–2619 (2016) MathSciNetMATHGoogle Scholar
  35. 35.
    Strömberg, N.: A Newton method for three-dimensional fretting problems. Int. J. Solids Struct. 36, 2075–2090 (1999) CrossRefMATHGoogle Scholar
  36. 36.
    Strömberg, N., Johansson, L., Klarbring, A.: Derivation and analysis of a generalized standard model for contact, friction and wear. Int. J. Solids Struct. 33, 1817–1836 (1996) MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Zmitrowicz, A.: Variational descriptions of wearing out solids and wear particles in contact mechanics. J. Theor. Appl. Mech. 39, 791–808 (2001) MATHGoogle Scholar
  38. 38.
    Zmitrowicz, A.: Wear patterns and laws of wear-a review. J. Theor. Appl. Mech. 44, 219–253 (2006) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Mircea Sofonea
    • 1
  • Flavius Pătrulescu
    • 2
  • Ahmad Ramadan
    • 1
  1. 1.Laboratoire de Mathématiques et PhysiqueUniversité de PerpignanPerpignanFrance
  2. 2.Tiberiu Popoviciu Institute of Numerical AnalysisCluj-NapocaRomania

Personalised recommendations