Acta Applicandae Mathematicae

, Volume 135, Issue 1, pp 145–173 | Cite as

Optimal Geometric Control Applied to the Protein Misfolding Cyclic Amplification Process

  • Monique ChybaEmail author
  • Jean-Michel Coron
  • Pierre Gabriel
  • Alain Jacquemard
  • Geoff Patterson
  • Gautier Picot
  • Peipei Shang


Protein Misfolding Cyclic Amplification is a procedure used to accelerate the prion-replication process involved during the incubation period of transmissible spongiform encephalopathies. This technique could be used to design an efficient diagnosis test detecting the abnormally-shaped protein responsible of the decease before the affected person is at an advanced stage of the illness. In this paper, we investigate the open problem to determine what is the optimal strategy to produce maximum replication in a fixed time. Primarily, we expand on prior attempt to answer this question in general, and provide results under some specific assumptions.


Transmissible spongiform encephalopathies Nucleated polymerization Optimal control Singular extremals 

Mathematics Subject Classification

93C95 70Q05 70E60 


  1. 1.
    Arnold, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1989) CrossRefGoogle Scholar
  2. 2.
    Balagué, D., Cañizo, J., Gabriel, P.: Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinet. Relat. Models 6(2), 219–243 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bonnard, B., Chyba, M.: Singular Trajectories and Their Role in Control Theory. Springer, Berlin (2003) zbMATHGoogle Scholar
  4. 4.
    Bonnard, B., Caillau, J.-B., Trélat, E.: Second order optimality conditions in the smooth case and applications in optimal control. ESAIM Control Optim. Calc. Var. 13, 207–236 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bonnard, B., Chyba, M., Jacquemard, A., Marriott, J.: Algebraic geometric classification of the singular flow in the contrast imaging problem in nuclear magnetic resonance. Math. Control Relat. Fields 3(4), 397–432 (2013). Special issue in the honor of Bernard Bonnard. Part II CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Caillau, J.-B., Cots, O., Gergaud, J.: Differential continuation for regular optimal control problems. Optim. Methods Softw. 27(2), 177–196 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Calvez, V., Doumic, M., Gabriel, P.: Self-similarity in a general aggregation-fragmentation problem. Application to fitness analysis. J. Math. Pures Appl. 98(9), 1–27 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Calvez, V., Gabriel, P., Gaubert, S.: Non-linear eigenvalue problems arising from growth maximization of positive linear dynamical systems (2014), submitted. arXiv:1404.1868
  9. 9.
    Castilla, J., Saa, P., Soto, C.: Detection of prions in blood. Nat. Med. 11, 982–985 (2005) Google Scholar
  10. 10.
    Cohen, F.E., Prusinier, S.B.: Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793–819 (1998) CrossRefGoogle Scholar
  11. 11.
    Collinge, J.: Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24, 519–555 (2001) CrossRefGoogle Scholar
  12. 12.
    Coron, J.-M., Gabriel, P., Shang, P.: Optimization of an Amplification Protocol for Misfolded Proteins by using Relaxed Control. J. Math. Biol. Published online: February 25, 2014. doi: 10.1007/s00285-014-0768-9
  13. 13.
    Cots, O.: Contrôle optimal géométrique: méthodes homotopiques et applications. Ph.D. Thesis, Institut Mathématiques de Bourgogne, Dijon, France (2012) Google Scholar
  14. 14.
    Doumic, M., Gabriel, P.: Eigenelements of a general aggregation-fragmentation model. Math. Models Methods Appl. Sci. 20, 757–783 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Fernandez-Borges, N., Castilla, J.: PMCA. A decade of in vitro prion replication. Curr. Chem. Biol. 4, 200–207 (2010) Google Scholar
  16. 16.
    Gabriel, P.: Equations de transport-fragmentation et applications aux maladies à prions (Transport-fragmentation equations and applications to prion deceases). Ph.D. Thesis, Paris (2011) Google Scholar
  17. 17.
    Gonzalez-Montalban, N., Makarava, N., Ostapchenko, V.G., Savtchenk, R., Alexeeva, I., et al.: Highly efficient protein misfolding cyclic amplification. PLoS Pathog. 7(2), e1001277 (2011). doi: 10.1371/journal.ppat.1001277 CrossRefGoogle Scholar
  18. 18.
    Greer, M.L., Pujo-Menjouet, L., Webb, G.F.: A mathematical analysis of prion proliferation. J. Theor. Biol. 242(3), 598–606 (2006) CrossRefMathSciNetGoogle Scholar
  19. 19.
    Jarrett, J.T., Lansbury, P.T.: Seeding one-dimensional crystallization of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6), 1055–1058 (1993) CrossRefGoogle Scholar
  20. 20.
    Krener, A.J.: The high order maximal principle and its application to singular extremals. SIAM J. Control Optim. 15(2), 256–293 (1977) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kupka, I.: The ubiquity of Fuller’s phenomenon Nonlinear controllabillity and optimal control. In: Monogr. Textbooks Pure Apll. Math., vol. 133, pp. 313–350. Dekker, New York (1990) Google Scholar
  22. 22.
    Ledzewicz, U., Schättler, H.: Analysis of a cell-cycle specific model for cancer chemotherapy. J. Biol. Syst. 10(03), 183–206 (2002) CrossRefzbMATHGoogle Scholar
  23. 23.
    Ledzewicz, U., Schättler, H.: Drug resistance in cancer chemotherapy as an optimal control problem. Discrete Contin. Dyn. Syst., Ser. B 6(1), 129–150 (2002) Google Scholar
  24. 24.
    Ledzewicz, U., Schättler, H.: Analysis of models for evolving drug resistance in cancer chemotherapy. Dyn. Contin. Discrete Impuls. Syst. 13B(suppl.)(03), 291–304 (2006) Google Scholar
  25. 25.
    Lee, E.B., Markus, L.: Fondations of Optimal Control Theory, 2nd edn. Krieger, Melbourne (1986) Google Scholar
  26. 26.
    Masel, J., Jansen, V.A.A., Nowak, M.A.: Quantifying the kinetic parameters of prion replication. Biophys. Chem. 77(2-3), 139–152 (1999) CrossRefGoogle Scholar
  27. 27.
    Mays, C.E., Titlow, W., Seward, T., Telling, G.C., Ryou, C.: Enhancement of protein misfolding cyclic amplification by using concentrated cellular prion protein source. Biochem. Biophys. Res. Commun. 388, 306–310 (2009) CrossRefGoogle Scholar
  28. 28.
    Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2) (Results in Mathematics and Related Areas (2)), vol. 34. Springer, Berlin (1994) CrossRefGoogle Scholar
  29. 29.
    Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962) zbMATHGoogle Scholar
  30. 30.
    Roos, R., Gajdusek, D.C., Gibbs, C.J. Jr.: The clinical characteristics of transmissible Creutzfeldt-Jakob disease. Brain 96, 1–20 (1973) CrossRefGoogle Scholar
  31. 31.
    Saa, P., Castilla, J., Soto, C.: Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 281(16), 35245–35252 (2006) CrossRefGoogle Scholar
  32. 32.
    Saborio, G.P., Permanne, B., Soto, C.: Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 411, 810–813 (2001) CrossRefGoogle Scholar
  33. 33.
    Serre, D.: Theory and applications. In: Matrices. Graduate Texts in Mathematics, vol. 16. Springer, New York (2002). Translated from the 2001 French original Google Scholar
  34. 34.
    Zaslavski, J.: Turnpike Properties in the Calculus of Variations and Optimal Control. Nonconvex Optimization and Its Applications, vol. 80. Springer, New York (2006) zbMATHGoogle Scholar
  35. 35.
    Zelikin, M.I., Borisov, V.F.: Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering. Birkhäuser, Basel (1994) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Monique Chyba
    • 1
    Email author
  • Jean-Michel Coron
    • 2
  • Pierre Gabriel
    • 3
  • Alain Jacquemard
    • 4
  • Geoff Patterson
    • 1
  • Gautier Picot
    • 1
  • Peipei Shang
    • 5
  1. 1.Mathematics DepartmentUniversity of Hawai‘iHonoluluUSA
  2. 2.Laboratoire Jacques-Louis LionsUMR 7598, Université Pierre et Marie Curie-Paris 6ParisFrance
  3. 3.Laboratoire de Mathématiques de VersaillesCNRS UMR 8100, Université de Versailles Saint-QuentinVersaillesFrance
  4. 4.Institut de Mathématiques de BourgogneUMR 5584, Université de BourgogneDijonFrance
  5. 5.Department of MathematicsTongji UniversityShanghaiChina

Personalised recommendations