Acta Applicandae Mathematicae

, Volume 132, Issue 1, pp 635–647 | Cite as

Ten Issues About Hysteresis

  • Augusto VisintinEmail author


In this note some basic models of hysteresis are reviewed: the linear and generalized plays, the relay and the Preisach model. Some related questions are also illustrated.


Hysteresis Ferromagnetism Elasto-plasticity 



This work was partly supported by the P.R.I.N. project “Calculus of Variations” of Italian M.I.U.R.


  1. 1.
    Bertotti, G.: Hysteresis in Magnetism. Academic Press, Boston (1998) Google Scholar
  2. 2.
    Bertotti, G., Mayergoyz, I. (eds.): The Science of Hysteresis. Elsevier, Oxford (2006) Google Scholar
  3. 3.
    Bertotti, G., Mayergoyz, I., Serpico, C.: Nonlinear Magnetization Dynamics in Nanosystems. Elsevier, Amsterdam (2009) zbMATHGoogle Scholar
  4. 4.
    Bouc, R.: Solution périodique de l’équation de la ferrorésonance avec hystérésis. C.R. Acad. Sci. Paris, Sér. A 263, 497–499 (1966) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bouc, R.: Modèle mathématique d’hystérésis et application aux systèmes à un degré de liberté. Thèse, Marseille (1969) Google Scholar
  6. 6.
    Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Heidelberg (1996) CrossRefzbMATHGoogle Scholar
  7. 7.
    Brokate, M., Visintin, A.: Properties of the Preisach model for hysteresis. J. Reine Angew. Math. 402, 1–40 (1989) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Dal Maso, G., Toader, R.: A model for the quasi-static growth or brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162, 101–135 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Damlamian, A., Visintin, A.: Une généralisation vectorielle du modèle de Preisach pour l’hystérésis. C. R. Acad. Sci., Sér. 1 Math. 297, 437–440 (1983) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Della Torre, E.: Magnetic Hysteresis. Wiley/IEEE Press, New York (1999) Google Scholar
  11. 11.
    Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem: existence and approximation results. J. Mech. Phys. Solids 46, 1319–1342 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Gurevich, P., Shamin, R., Tikhomirov, S.: Reaction-diffusion equations with spatially distributed hysteresis. SIAM J. Math. Anal. 45, 1328–1355 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Krasnosel’skiĭ, M.A., Darinskiĭ, B.M., Emelin, I.V., Zabreĭko, P.P., Lifsic, E.A., Pokrovskiĭ, A.V.: Hysterant operator. Sov. Math. Dokl. 11, 29–33 (1970) Google Scholar
  14. 14.
    Krasnosel’skiĭ, M.A., Pokrovskiĭ, A.V.: Systems with Hysteresis. Springer, Berlin (1989). Russian edition: Nauka, Moscow (1983) CrossRefzbMATHGoogle Scholar
  15. 15.
    Krejčí, P.: Convexity, Hysteresis and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996) Google Scholar
  16. 16.
    Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York (1991) CrossRefzbMATHGoogle Scholar
  17. 17.
    Mayergoyz, I.D.: Mathematical Models of Hysteresis and Their Applications. Elsevier, Amsterdam (2003) Google Scholar
  18. 18.
    Mielke, A.: Evolution of rate-independent systems. In: Dafermos, C., Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Differential Equations, vol. II, pp. 461–559. Elsevier/North-Holland, Amsterdam (2005) Google Scholar
  19. 19.
    Mielke, A., Theil, F., Levitas, V.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162, 137–177 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Preisach, F.: Über die magnetische Nachwirkung. Z. Phys. 94, 277–302 (1935) CrossRefGoogle Scholar
  21. 21.
    Visintin, A.: Hystérésis dans les systèmes distribués. C. R. Acad. Sci., Sér. 1 Math. 293, 625–628 (1981) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Visintin, A.: A model for hysteresis of distributed systems. Ann. Mat. Pura Appl. 131, 203–231 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Visintin, A.: A phase transition problem with delay. Control Cybern. 11, 5–18 (1982) zbMATHMathSciNetGoogle Scholar
  24. 24.
    Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994) CrossRefzbMATHGoogle Scholar
  25. 25.
    Visintin, A.: Vector Preisach model and Maxwell’s equations. Physica B 306, 21–25 (2001) CrossRefGoogle Scholar
  26. 26.
    Visintin, A.: Quasi-linear hyperbolic equations with hysteresis. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 19, 451–476 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Visintin, A.: Maxwell’s equations with vector hysteresis. Arch. Ration. Mech. Anal. 175, 1–38 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Visintin, A.: Mathematical models of hysteresis. In: Bertotti, G., Mayergoyz, I. (eds.) The Science of Hysteresis, pp. 1–123. Elsevier, Amsterdam (2006). Chap. 1 CrossRefGoogle Scholar
  29. 29.
    Visintin, A.: Rheological models vs. homogenization. GAMM-Mitt. 34, 113–117 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Visintin, A.: P.D.E.s with hysteresis 30 years later. In: Proceedings of a School on “Rate-Independent Evolutions and Hysteresis Modelling”, held in Milan (May 2013, in press) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità degli Studi di TrentoPovo di TrentoItaly

Personalised recommendations