Advertisement

Acta Applicandae Mathematicae

, Volume 132, Issue 1, pp 427–437 | Cite as

The Propagation of Shock Waves in Incompressible Fluids: The Case of Freshwater

  • Andrea Mentrelli
  • Tommaso Ruggeri
Article
  • 190 Downloads

Abstract

In this paper we investigate the basic features of shock waves propagation in freshwater in the framework of a hyperbolic model consisting of the one-dimensional Euler equations closed by means of polynomial equations of state extracted from experimental tabulated data available in the literature (Sun et al. in Deep-Sea Res. I 55:1304–1310, 2008). The Rankine–Hugoniot equations are numerically solved in order to determine the Hugoniot locus representing the set of perturbed states that can be connected through a k-shock to an unperturbed state.

The results are found to be consistent with those previously obtained in the framework of the EQTI model by means of a modified Boussinesq equation of state.

Keywords

Incompressible fluids Shock waves in water Rankine–Hugoniot conditions 

Notes

Acknowledgements

The authors are grateful to Dott. Francesco Paparella (University of Salento) for the interesting discussions and for providing useful references. This work has been partially supported by GNFM/INdAM Young Researchers Project 2012 “Hyperbolic Models for Incompressible Materials” (A.M.), and by University of Bologna FARB 2012 Project “Extended Thermodynamics of Non-Equilibrium Processes from Macro- to Nano-Scale” and GNFM/INdAM (A.M. & T.R.)

References

  1. 1.
    Klainerman, S., Majda, S.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34, 481–524 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Klainerman, S., Majda, S.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35, 629–653 (1982) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Lions, P.-L., Masmoudi, N.: Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77, 585–627 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Desjardins, B., Grenier, E., Lions, P.-L., Masmoudi, N.: Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. 78, 461–471 (1999) CrossRefMathSciNetGoogle Scholar
  5. 5.
    Müller, I.: Thermodynamics. Pitman, London (1985) zbMATHGoogle Scholar
  6. 6.
    Rajagopal, K.R., Ruzika, M., Srinivasa, A.R.: On the Oberbeck–Boussinesq approximation. Math. Models Methods Appl. Sci. 6, 1157–1167 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Rajagopal, K.R., Saccomandi, G., Vergori, L.: On the Oberbeck–Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Anal., Real World Appl. 10, 1139–1150 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Scott, N.H.: Linear dynamical stability in constrained thermoelasticity: II. Deformation-entropy constraints. Q. J. Mech. Appl. Math. 45, 651–662 (1992) CrossRefzbMATHGoogle Scholar
  9. 9.
    Scott, N.H.: Thermoelasticity with thermomechanical constraints. Int. J. Non-Linear Mech. 36, 549–564 (2001) CrossRefzbMATHGoogle Scholar
  10. 10.
    Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981) Google Scholar
  11. 11.
    Straughan, B.: The Energy Method, Stability and Non-Linear Convection, 2nd edn. Springer, Berlin (2004) CrossRefGoogle Scholar
  12. 12.
    Gouin, H., Muracchini, A., Ruggeri, T.: On the Müller paradox for thermal incompressible media. Contin. Mech. Thermodyn. 24, 505–513 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gouin, H., Ruggeri, T.: A consistent thermodynamical model of incompressible media as limit case of quasi-thermal-incompressible materials. Int. J. Non-Linear Mech. 47, 688–693 (2012) CrossRefGoogle Scholar
  14. 14.
    Mentrelli, A., Ruggeri, T.: The Riemann problem for a hyperbolic model of incompressible fluids. Int. J. Non-Linear Mech. 51, 87–96 (2013) CrossRefGoogle Scholar
  15. 15.
    Mentrelli, A., Ruggeri, T.: Shock and rarefaction waves in a hyperbolic model of incompressible materials. AAPP, Phys. Math. Nat. Sci. 91(S1), A13-1–A13-16 (2013) MathSciNetGoogle Scholar
  16. 16.
    Sun, H., Feistel, R., Koch, M., Markoe, A.: New equations for density, entropy, heat capacity, and potential temperature of a saline thermal fluid. Deep-Sea Res. I 55, 1304–1310 (2008) CrossRefGoogle Scholar
  17. 17.
    Mentrelli, A., Ruggeri, T.: Asymptotic behavior of Riemann and Riemann with structure problems for a 2×2 hyperbolic dissipative system. In: Suppl. Rend. Rend. Circ. Mat. Palermo, Non. Linear Hyperbolic Fields and Waves—A Tribute to Guy Boillat, vol. II/78, pp. 201–226 (2006) Google Scholar
  18. 18.
    Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 11. SIAM, Philadelphia (1973) CrossRefzbMATHGoogle Scholar
  19. 19.
    Mentrelli, A., Ruggeri, T., Sugiyama, M., Zhao, N.: Interaction between a shock and an acceleration wave in a perfect gas for increasing shock strength. Wave Motion 45, 498–517 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Liu, T.-P.: The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, 78–88 (1976) CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Liu, T.-P., Ruggeri, T.: Entropy production and admissibility of shocks. Acta Math. Appl. Sin.—Eng. Ser. 19, 1–12 (2003) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Taniguchi, S., Mentrelli, A., Zhao, N., Ruggeri, T., Sugiyama, M.: Shock-induced phase transition in systems of hard spheres with internal degrees of freedom. Phys. Rev. E 81, 066307 (2010) CrossRefGoogle Scholar
  23. 23.
    Taniguchi, S., Mentrelli, A., Ruggeri, T., Sugiyama, M., Zhao, N.: Prediction and simulation of compressive shocks with lower perturbed density for increasing shock strength in real gases. Phys. Rev. E 82, 036324 (2010) CrossRefGoogle Scholar
  24. 24.
    Zhao, N., Mentrelli, A., Ruggeri, T., Sugiyama, M.: Admissible shock waves and shock-induced phase transitions in a van der Waals fluid. Phys. Fluids 23, 086101 (2011) CrossRefGoogle Scholar
  25. 25.
    Weast, R.C., Astle, M.J., Beyer, W.H. (eds.): CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (1988) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Mathematics & Research Center of Applied Mathematics (CIRAM)University of BolognaBolognaItaly

Personalised recommendations