Advertisement

Acta Applicandae Mathematicae

, Volume 133, Issue 1, pp 33–43 | Cite as

A Note on Aubin-Lions-Dubinskiĭ Lemmas

  • Xiuqing Chen
  • Ansgar Jüngel
  • Jian-Guo Liu
Article

Abstract

Strong compactness results for families of functions in seminormed nonnegative cones in the spirit of the Aubin-Lions-Dubinskiĭ lemma are proven, refining some recent results in the literature. The first theorem sharpens slightly a result of Dubinskiĭ (in Mat. Sb. 67(109):609–642, 1965) for seminormed cones. The second theorem applies to piecewise constant functions in time and sharpens slightly the results of Dreher and Jüngel (in Nonlinear Anal. 75:3072–3077, 2012) and Chen and Liu (in Appl. Math. Lett. 25:2252–2257, 2012). An application is given, which is useful in the study of porous-medium or fast-diffusion type equations.

Keywords

Compactness in Banach spaces Rothe method Dubinskii lemma Seminormed cone 

Mathematics Subject Classification (2000)

46B50 35A35 

Notes

Acknowledgements

The first author acknowledges support from the National Science Foundation of China, grant 11101049. The second author acknowledges partial support from the Austrian Science Fund (FWF), grants P20214, P22108, I395, and W1245. This research was supported by the European Union under Grant Agreement number 304617 (Marie-Curie Project “Novel Methods in Computational Finance”). The third author acknowledges support from the National Science Foundation of the USA, grant DMS 10-11738.

References

  1. 1.
    Alt, H.W., Luckhaus, S.: Quasilinear eliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glas. Mat. 35, 161–177 (2000) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Aubin, J.: Un théorème de compacité. C. R. Acad. Sci. Paris 256, 5042–5044 (1963) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Barrett, J., Süli, E.: Reflections on Dubinskiĭ’s nonlinear compact embedding theorem. Publ. Inst. Math. 91, 95–110 (2012) CrossRefGoogle Scholar
  5. 5.
    Bogachev, V.I.: Measure Theory, Volume I. Springer, Berlin (2007) CrossRefGoogle Scholar
  6. 6.
    Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Carrillo, J.A., Hittmeir, S., Jüngel, A.: Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model. Math. Models Methods Appl. Sci. 22, 1250041 (2012), 35 pp. CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, X., Liu, J.-G.: Two nonlinear compactness theorems in L p(0,T;B). Appl. Math. Lett. 25, 2252–2257 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Chen, X., Liu, J.-G.: Analysis of polymeric floe models and related compactness theorems in weighted space. SIAM J. Math. Anal. 45, 1179–1215 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Dreher, M., Jüngel, A.: Compact families of piecewise constant functions in L p(0,T;B). Nonlinear Anal. 75, 3072–3077 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Dubinskiĭ, Y.A.: Weak convergence for nonlinear elliptic and parabolic equations. Mat. Sb. 67(109), 609–642 (1965) (In Russian) MathSciNetGoogle Scholar
  12. 12.
    Gallouët, T., Latché, J.-C.: Compactness of discrete approximate solutions to parabolic PDEs—application to a turbulence model. Commun. Pure Appl. Anal. 11, 2371–2391 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Hittmeier, S., Jüngel, A.: Cross diffusion preventing blow-up in the two-dimensional Keller-Segel model. SIAM J. Math. Anal. 43, 997–1022 (2011) CrossRefMathSciNetGoogle Scholar
  14. 14.
    Kačur, J.: Method of Rothe in Evolution Equations. Teubner, Leipzig (1985) zbMATHGoogle Scholar
  15. 15.
    Kalita, P.: Convergence of Rothe scheme for hemivariational inequalities of parabolic type. Int. J. Numer. Anal. Model. 10, 445–465 (2013) zbMATHMathSciNetGoogle Scholar
  16. 16.
    Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod/Gauthier-Villard, Paris (1969) zbMATHGoogle Scholar
  17. 17.
    Maitre, E.: On a nonlinear compactness lemma in L p(0,T;B). Int. J. Math. Math. Sci. 27, 1725–1730 (2003) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Rakotoson, J., Temam, R.: An optimal compactness theorem and application to elliptic-parabolic systems. Appl. Math. Lett. 14, 303–306 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Rossi, R., Savaré, G.: Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces. Ann. Sc. Norm. Super. Pisa 2, 395–431 (2003) zbMATHGoogle Scholar
  20. 20.
    Roubíček, T.: A generalization of the Lions-Temam compact imbedding theorem. Čas. Pěst. Mat. 115, 338–342 (1990) zbMATHGoogle Scholar
  21. 21.
    Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2005) zbMATHGoogle Scholar
  22. 22.
    Simon, J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146, 65–96 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Temam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edn. SIAM, Philadelphia (1995) CrossRefzbMATHGoogle Scholar
  24. 24.
    Walkington, N.: Compactness properties of the DG and CG time stepping scheme for parabolic equations. SIAM J. Numer. Anal. 47, 4680–4710 (2010) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.School of SciencesBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria
  3. 3.Department of Physics and Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations