Acta Applicandae Mathematicae

, Volume 131, Issue 1, pp 155–177 | Cite as

Planetary Motion on an Expanding Locally Anisotropic Background

  • P. Castelo Ferreira


In this work are computed analytical solutions for orbital motion on a background described by an Expanding Locally Anisotropic (ELA) metric ansatz. This metric interpolates between the Schwarzschild metric near the central mass and the Robertson-Walker metric describing the expanding cosmological background far from the central mass allowing for a fine-tuneable covariant parameterization of gravitational interactions corrections in between these two asymptotic limits. In particular it is shown that the decrease of the Sun’s mass by radiation emission plus the General Relativity corrections due to the ELA metric background with respect to Schwarzschild backgrounds can be mapped to the reported yearly variation of the gravitational constant \(\dot{G}\) through Kepler’s third law. Based on the value of the heuristic fit corresponding to the more recent heliocentric ephemerides of the Solar System are derived bounds for the value of a constant parameter α 0 for the ELA metric as well as the maximal corrections to perihelion advance and orbital radii variation within this framework. Hence it is shown that employing the ELA metric as a functional covariant parameterization to model gravitational interactions corrections within the Solar System allows to maintain the measurement projection standards constant over time, specifically both the Astronomical Unit (AU) and the Gravitational constant (G). Also it is noted that the effect obtained is not homogeneous for all planetary orbits consistently with the diversity of estimates in the literature obtained assuming Schwarzschild backgrounds.


Gravity Modified gravity Orbital motion Solar System Astronomical Unit Local anisotropy Cosmological expansion Variation of fundamental constants 

Mathematics Subject Classification

70F15 83C10 83C25 83D05 85A04 



This work was supported by grant SFRH/BPD/34566/2007 from FCT-MCTES. Work developed in the scope of the strategical project of GFM-UL PEst-OE/MAT/UI0208/2011.


  1. 1.
    Castelo Ferreira, P.: An expanding locally anisotropic (ELA) metric for matter in an expanding universe. Phys. Lett. B 684, 73–76 (2010). arXiv:1006.1617 CrossRefGoogle Scholar
  2. 2.
    Castelo Ferreira, P.: A locally anisotropic metric for matter in an expanding universe I. arXiv:0907.0847
  3. 3.
    Carrera, M., Giulini, D.: On the Influence of the global expansion on the local dynamics in the solar system. arXiv:gr-qc/0602098
  4. 4.
    Carrera, M., Giulini, D.: On the Influence of the global cosmological expansion on the dynamics and kinematics of local systems. arXiv:0810.2712
  5. 5.
    Faraoni, V., Jacques, A.: Cosmological expansion and local physics. arXiv:0707.1350
  6. 6.
    Nolan, B.C.: A point mass in an isotropic universe: II. Global properties. Class. Quantum Gravity 16, 1227–1254 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Sereno, M., Jetzer, P.: Evolution of gravitational orbits in the expanding universe. Phys. Rev. D 75, 064031 (2007). arXiv:astro-ph/0703121 CrossRefMathSciNetGoogle Scholar
  8. 8.
    Bolen, B., Bombelli, L., Puzio, R.: Expansion-induced contributions to the perihelium advance of binary orbits. Class. Quantum Gravity 18, 1173–1178 (2001) CrossRefzbMATHGoogle Scholar
  9. 9.
    Pitjeva, E.V., Pitjev, N.P.: Changes in the Sun’s mass and gravitational constant estimated using modern observations of planets and spacecraft. Sol. Syst. Res. 46, 78–87 (2012). arXiv:1108.0246 CrossRefGoogle Scholar
  10. 10.
    Hubble, E.P.: A relation between distance and radial velocity among extragalactic nebulae. Proc. Natl. Acad. Sci. USA 15, 169–173 (1929) CrossRefGoogle Scholar
  11. 11.
    Sandage, A.: The change of redshift and apparent luminosity of galaxies due to the deceleration of selected expanding universes. Astrophys. J. 136, 319 (1962) CrossRefGoogle Scholar
  12. 12.
    Guth, A.H.: Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981) CrossRefGoogle Scholar
  13. 13.
    Schwarzschild, K.: On the gravitational field of a mass point according to Einstein’s theory. In: Sitzungsber. Preuss. Akad. Wiss. Berlin—Math. Phys., pp. 189–196 (1916). physics/9905030 Google Scholar
  14. 14.
    Schwarzschild, K.: On the gravitational field of a sphere of incompressible fluid according to Einstein’s theory. In: Sitzungsber. Preuss. Akad. Wiss. Berlin—Math. Phys., pp. 424–434 (1916). physics/9912033 Google Scholar
  15. 15.
    Robertson, H.P.: Kinematics and world structure. Astron. J. 82, 248–301 (1935) CrossRefGoogle Scholar
  16. 16.
    Robertson, H.P.: Kinematics and world structure. Astron. J. 83, 187–201 (1936) CrossRefGoogle Scholar
  17. 17.
    Robertson, H.P.: Kinematics and world structure. Astron. J. 83, 257–271 (1936) CrossRefzbMATHGoogle Scholar
  18. 18.
    Walker, A.G.: On Milne’s theory of world structure. Proc. Lond. Math. Soc. 42, 90–127 (1936) Google Scholar
  19. 19.
    McVittie, G.C.: The mass particle in an expanding universe. Mon. Not. R. Astron. Soc. 93, 325 (1933) Google Scholar
  20. 20.
    Mizony, M., Lachièze-Rey, M.: Cosmological effects in the local static frame. Astron. Astrophys. 434, 45–52 (2005). arXiv:gr-qc/0412084 CrossRefzbMATHGoogle Scholar
  21. 21.
    Atkins, G.S., McDonnell, J., Fell, R.N.: Cosmological perturbations on local systems. arXiv:gr-qc/0612146
  22. 22.
    Ferraris, M., Francaviglia, M., Spallicci, A.: Associated radius, energy and pressure of McVittie’s metric in its astrophysical application. Nuovo Cimento B 111, 1031–1036 (1996) CrossRefGoogle Scholar
  23. 23.
    Davis, M., Peebles, P.J.E.: Evidence for local anisotropy of the Hubble flow. Annu. Rev. Astron. Astrophys. 21, 109–130 (1983) CrossRefGoogle Scholar
  24. 24.
    Komatsu, E., et al.: Five-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astron. J. Suppl. 180, 330–376 (2009). arXiv:0803.0547 CrossRefGoogle Scholar
  25. 25.
    Jarosik, N., et al.: Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: sky maps, systematic errors, and basic results. arXiv:1001.4744
  26. 26.
    Castelo Ferreira, P.: Parameterizing the flattening of galaxies rotation curves on expanding locally anisotropic backgrounds. arXiv:1006.1619
  27. 27.
    Castelo Ferreira, P.: Constraining an expanding locally anisotropic metric from the Pioneer anomaly. Adv. Space Res. 51, 1266–1277 (2013). arXiv:1202.6189 CrossRefGoogle Scholar
  28. 28.
    Misner, C.W., Thorne, K.S., Wheeler, J.A.: Gravitation. Freeman, New York (1973) Google Scholar
  29. 29.
    Kenyon, I.R.: General Relativity. Oxford Science Publications, Oxford (1995) Google Scholar
  30. 30.
    Pitjeva, E.V.: High-precision ephemerides of planets—EPM and determination of some astronomical constants. Sol. Syst. Res. 39, 176–186 (2005) CrossRefGoogle Scholar
  31. 31.
    Fienga, A., Laskar, J., Kuchynka, P., Manche, H., Desvignes, G., Gastineau, M., Cognard, I., Theureau, G.: The INPOP10a planetary ephemeris and its applications in fundamental physics. Celest. Mech. Dyn. Astron. 111, 363–385 (2011) CrossRefGoogle Scholar
  32. 32.
    Nordtvedt, K.: Equivalence principle for massive bodies. I. Phenomenology. Phys. Rev. 169, 1014–1016 (1968) CrossRefGoogle Scholar
  33. 33.
    Nordtvedt, K.: Equivalence principle for massive bodies. II. Theory. Phys. Rev. 169, 1017–1025 (1968) CrossRefGoogle Scholar
  34. 34.
    Newhall, X.X., Standish, E.M. Jr., Williams, J.G.: DE102: a numerically integrated ephemerides of the moon and planets spanning forty-four centuries. Astron. Astrophys. 125, 150–167 (1983) zbMATHGoogle Scholar
  35. 35.
    Pitjeva, E.V.: Modern numerical theories of the motion of the Sun, Moon and major planets: a comprehensive commentary to the astronomical yearbook. Tr. Inst. Prikl. Astron. Ross. Akad. Nauk 10, 112–134 (2004) Google Scholar
  36. 36.
    International Astronomical Union (IAU): Proc. 16th General Assembly. Trans. IAU 17(31), 52–66 (1976) Google Scholar
  37. 37.
    Standish, E.M.: The astronomical unit now. In: Kurtz, D.W. (ed.) Transits of venus: new views of the solar system and galaxy, proceedings of IAU colloquium, vol. 196, pp. 163–179. Cambridge University Press, Cambridge (2004) Google Scholar
  38. 38.
    Krasinsky, G.A., Brumberg, V.A.: Secular increase of the astronomical unit from analysis of the major planet motions and its interpretation. Celest. Mech. Dyn. Astron. 90, 267–288 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    Uzan, J.-P.: The fundamental constants and their variation: observational status and theoretical motivations. Rev. Mod. Phys. 75, 403 (2003). arXiv:hep-ph/0205340 CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    Uzan, J.-P.: Varying constants, gravitation and cosmology. Living Rev. Relativ. 14, 2 (2011). arXiv:1009.5514 CrossRefGoogle Scholar
  41. 41.
    Standish, E.M.: JPL planetary and lunar ephemerides, DE405/LE405. Jet Propulsion Laboratory (1998). IOM 312.F-98-048 Google Scholar
  42. 42.
    Williams, D.R.: Solar system fact sheets.
  43. 43.
    Damour, T., Gibbons, G.W., Taylor, J.H.: Limits on the variability of G using binary-pulsar data. Phys. Rev. Lett. 61, 1151–1154 (1988) CrossRefGoogle Scholar
  44. 44.
    Thibault, D., Taylor, J.H.: On the orbital period change of the binary pulsar PSR 1913 + 16. Astrophys. J. 366, 501–511 (1992) Google Scholar
  45. 45.
    Veras, D., Wyatt, M.C.: The solar system’s post-main sequence escape boundary. arXiv:1201.2412
  46. 46.
    Hadjidemetriou, J.D.: Two-body problem with variable mass: a new approach. Icarus 2, 440–451 (1963) CrossRefMathSciNetGoogle Scholar
  47. 47.
    Verhulst, F.: Two-body problem with decreasing mass: the autonomous case. Bull. Astr. Inst. Netherlands 20, 215–221 (1969) Google Scholar
  48. 48.
    Deprit, A.: The secular accelerations in Gylden’s problem. Celest. Mech. 31, 1–22 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  49. 49.
    Veras, D., Wyatt, M.C., Mustill, A.J., Bonsor, A., Eldridge, J.J.: The great escape: how exoplanets and smaller bodies desert dying stars. Mon. Not. R. Astron. Soc. 417, 2104–2123 (2011). arXiv:1107.1239 CrossRefGoogle Scholar
  50. 50.
    Arakida, H.: Time delay in Robertson-McVittie spacetime and its application to increase of astronomical unit. New Astron. 14, 264–268 (2009). arXiv:0808.3828 CrossRefGoogle Scholar
  51. 51.
    Sereno, M., Jetzer, P.: Dark matter vs. modifications of the gravitational inverse-square law. Results from planetary motion in the solar system. Mon. Not. R. Astron. Soc. 371, 626–632 (2006). arXiv:astro-ph/0606197 CrossRefGoogle Scholar
  52. 52.
    Shapiro, I.I., Smith, W.B., Ash, M.B.: Gravitational constant—experimental bound on its time variation. Phys. Rev. Lett. 26, 27 (1971) CrossRefGoogle Scholar
  53. 53.
    Turyshev, S.G., Williams, J.G.: Space-based tests of gravity with laser ranging. Int. J. Mod. Phys. D 16, 2165–2179 (2007). arXiv:gr-qc/0611095 CrossRefGoogle Scholar
  54. 54.
    Konopliv, A.S., et al.: Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Grupo de Física MatemáticaInstituto para a Investigação Interdisciplinar da Universidade de LisboaLisboaPortugal

Personalised recommendations