Acta Applicandae Mathematicae

, Volume 130, Issue 1, pp 237–250 | Cite as

Multiplicity of Solutions for a Nonlinear Klein-Gordon-Maxwell System

  • Xiaoming HeEmail author


In this paper we study the nonlinear Klein-Gordon-Maxwell system
$$\left \{\begin{array}{l@{\quad}l} -\Delta u+V(x)u-(2\omega+\phi)\phi u=f(x,u),&x\in{\mathbb{R}}^3,\\ \Delta \phi=(\omega+\phi)u^2,&x\in{\mathbb{R}}^3. \end{array} \right . $$
By means of a variant fountain theorem and the symmetric mountain pass theorem, we obtain the existence of infinitely many large energy solutions.


Klein-Gordon-Maxwell equation Large energy solutions Variational methods 

Mathematics Subject Classification (2000)

35J60 35Q40 



The author is very grateful to the anonymous referee for his/her careful reading the manuscript and valuable comments. This work was supported by NSFC Grants (11271386).


  1. 1.
    Azzollini, A., Pisani, L., Pomponio, A.: Improved estimates and a limit case for the electrostatic Klein-Gordon-Maxwell system. Proc. R. Soc. Edinb., Sect. A, Math. 141, 449–463 (2011) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Klein-Gordon-Maxwell equations. Topol. Methods Nonlinear Anal. 35, 33–42 (2010) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 779–791 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Bartsch, T., Wang, Z.-Q.: Existence and multiplicity results for superlinear elliptic problems on \({\mathbb{R}}^{N}\). Commun. Partial Differ. Equ. 20, 1725–1741 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bartsch, T., Wang, Z.-Q.: Multiple positive solutions for a nonlinear Schrödinger equation. Z. Angew. Math. Phys. 51, 366–384 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Benci, V., Fortunato, D.: The nonlinear Klein-Gordon equation coupled with the Maxwell equations. Nonlinear Anal. 47, 6065–6072 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Benci, V., Fortunato, D.: Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Carrião, P., Cunha, P., Miyagaki, O.: Existence results for the Klein-Gordon-Maxwell equations in higher dimensions with critical exponents. Commun. Pure Appl. Anal. 10, 709–718 (2011) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Carrião, P., Cunha, P., Miyagaki, O.: Positive and ground state solutions for the critical Klein-Gordon-Maxwell system with potentials. Preprint arXiv:1005.4088 [math.AP]
  12. 12.
    Cassani, D.: Existence and non-existence of solitary waves for the critical Klein-Gordon equation coupled with Maxwell’s equations. Nonlinear Anal. 58, 733–747 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    D’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein-Gordon-Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004) zbMATHMathSciNetGoogle Scholar
  14. 14.
    D’Aprile, T., Mugnai, D.: Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proc. R. Soc. Edinb., Sect. A, Math. 134, 1–14 (2004) CrossRefMathSciNetGoogle Scholar
  15. 15.
    Georgiev, V., Visciglia, N.: Solitary waves for Klein-Gordon-Maxwell system with external Coulomb potential. J. Math. Pures Appl. 84, 957–983 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on \({\mathbb{R}}^{N}\). Proc. R. Soc. Edinb., Sect. A, Math. 129, 787–809 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. American Mathematical Society, Providence (1986) Google Scholar
  19. 19.
    Willem, M.: Minimax Theorems. Birkhaüser, Basel (1996) CrossRefzbMATHGoogle Scholar
  20. 20.
    Zou, W.: Variant fountian theorem and their applications. Manuscr. Math. 104, 343–358 (2001) CrossRefzbMATHGoogle Scholar
  21. 21.
    Zou, W., Schechter, M.: Critical Point Theory and Its Applications. Springer, New York (2006) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.College of SciencesMinzu University of ChinaBeijingP.R. China

Personalised recommendations