Acta Applicandae Mathematicae

, Volume 122, Issue 1, pp 141–152 | Cite as

Traveling Wave Solutions of the One-Dimensional Extended Landau-Lifshitz-Gilbert Equation with Nonlinear Dry and Viscous Dissipations

Article

Abstract

The one-dimensional propagation of magnetic domain walls in ferromagnetic nanostrips is investigated in the framework of the extended Landau-Lifshitz-Gilbert equation which includes the effects of spin-polarized currents. The generalized model herein considered explicitly takes also into account two nonlinear mechanisms of dissipation, a rate-dependent viscous-like and a rate-independent dry-like, which are introduced for a better description of the relaxation processes in real samples. By adopting the traveling waves ansatz, we characterize the domain wall motion in two dynamical regimes, steady and precessional. The analytical results are also evaluated numerically in order to elucidate the corresponding physical implications.

Keywords

Micromagnetism Magnetic domain walls Traveling waves Nonlinear dry and viscous dissipation Spin-transfer-torque 

Notes

Acknowledgements

This paper was supported by GNFM-INdAM and by fondi PRA 2006 (University of Messina).

References

  1. 1.
    Allwood, D.A., Xiong, G., Faulkner, C.C., Atkinson, D., Petit, D., Cowburn, R.P.: Magnetic domain-wall logic. Science 309, 1688–1692 (2005) CrossRefGoogle Scholar
  2. 2.
    Chappert, C., Fert, A., Ngutyen van Dau, F.: The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007) CrossRefGoogle Scholar
  3. 3.
    Landau, L.D., Lifshitz, E.: Phys. Z. Sowjetunion 8, 153 (1935) MATHGoogle Scholar
  4. 4.
    Brown, W.F.: Micromagnetics. Krieger, Huntington (1963) Google Scholar
  5. 5.
    Schryer, N.L., Walker, I.R.: The motion of 180 domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406 (1974) CrossRefGoogle Scholar
  6. 6.
    Berger, L.: Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954 (1984) CrossRefGoogle Scholar
  7. 7.
    Thiaville, A., Nakatani, Y., Miltat, J., Suzuki, Y.: Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990 (2005) CrossRefGoogle Scholar
  8. 8.
    Tatara, G., Konho, H., Shibata, J., Lemaho, Y., Lee, K.J.: Spin torque and force due to current for general spin textures. J. Phys. Soc. Jpn. 76, 054707 (2007) CrossRefGoogle Scholar
  9. 9.
    Zhang, S., Li, Z.: Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004) CrossRefGoogle Scholar
  10. 10.
    Tserkovnyaka, Y., Brataasb, A., Bauerc, G.E.W.: Theory of current-driven magnetization dynamics in inhomogeneous ferromagnets. J. Magn. Magn. Mater. 320(7), 1282 (2008) CrossRefGoogle Scholar
  11. 11.
    Gilbert, T.L.: A Lagrangian formulation of gyromagnetic equation of the magnetization field. Phys. Rev. 100, 1243–1255 (1955) Google Scholar
  12. 12.
    Tiberkevich, V., Slavin, A.: Nonlinear phenomenological model of magnetic dissipation for large precession angles: generalization of the Gilbert model. Phys. Rev. B 75, 014440 (2007) CrossRefGoogle Scholar
  13. 13.
    Baltensperger, W., Helman, J.S.: Dry friction in micromagnetics. IEEE Trans. Magn. 27, 4772 (1991) CrossRefGoogle Scholar
  14. 14.
    Baltensperger, W., Helman, J.S.: A model that gives rise to effective dry friction in micromagnetics. J. Appl. Phys. 73, 6516 (1993) CrossRefGoogle Scholar
  15. 15.
    Visintin, A.: Modified Landau-Lifshitz equation for ferromagnetism. Physica B 233, 365 (1997) MathSciNetCrossRefGoogle Scholar
  16. 16.
    Podio-Guidugli, P., Tomassetti, G.: On the steady motions of a flat domain wall in a ferromagnet. Eur. Phys. J. B 26, 191 (2002) Google Scholar
  17. 17.
    Podio-Guidugli, P., Tomassetti, G.: On the evolution of domain walls in hard ferromagnets. SIAM J. Appl. Math. 64(6), 1887 (2004) MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Min, H., et al.: Effects of disorder and internal dynamics on vortex wall propagation. Phys. Rev. Lett. 104, 217201 (2010) CrossRefGoogle Scholar
  19. 19.
    Consolo, G., Currò, C., Martinez, E., Valenti, G.: Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Appl. Math. Model. (2011). doi:10.1016/j.apm.2011.12.024 MATHGoogle Scholar
  20. 20.
    Consolo, G., et al.: Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: a micromagnetic study. Phys. Rev. B 76, 144410 (2007) CrossRefGoogle Scholar
  21. 21.
    Bertotti, G.: Hysteresis in Magnetism. Academic Press, London (1998) Google Scholar
  22. 22.
    Kruger, B., et al.: Proposal of a robust measurement scheme for the nonadiabatic spin torque using the displacement of magnetic vortices. Phys. Rev. Lett. 104, 077201 (2010) CrossRefGoogle Scholar
  23. 23.
    Chen, D.X., Pardo, E., Sanchez, A.: Demagnetizing factors of rectangular prisms and ellipsoids. IEEE Trans. Magn. 38, 1742 (2002) CrossRefGoogle Scholar
  24. 24.
    Nakatani, Y., et al.: Faster magnetic walls in rough wires. Nat. Mater. 2, 521 (2003) CrossRefGoogle Scholar
  25. 25.
    Miron, I.M., et al.: Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 421 (2011) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Science for Engineering and ArchitectureUniversity of MessinaMessinaItaly

Personalised recommendations