Acta Applicandae Mathematicae

, Volume 120, Issue 1, pp 101–126 | Cite as

Inverse Problems in Darboux’ Theory of Integrability

  • Colin Christopher
  • Jaume Llibre
  • Chara Pantazi
  • Sebastian WalcherEmail author


The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the case of prescribed integrating factors. A number of relevant examples and applications is included.


Planar polynomial vector field Invariant curve Elementary integrability Integrating factor 



J. Llibre and C. Pantazi are partially supported by the MICIIN/FEDER grant MTM2008-03437. JL is additionally partially supported by a CIRIT grant number 2009SGR410 and by ICREA Academia. CP is additionally partial supported by the MICIIN/FEDER grant number MTM2009-06973 and by the Generalitat de Catalunya grant number 2009SGR859. S. Walcher acknowledges the hospitality and support of the CRM and the Mathematics Department at UAB during visits when this manuscript was prepared.


  1. 1.
    Acosta-Humánez, P.B., Lázaro, J.T., Morales-Ruiz, J.J., Pantazi, C.: On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory. Preprint (2011). arXiv:1012.4796v2. 27 pp.
  2. 2.
    Camacho, C., Sad, P.: Invariant varieties through singularities of holomorphic vector fields. Ann. Math. 15, 579–595 (1982) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carnicer, M.: The Poincaré problem in the nondicritical case. Ann. Math. 140, 289–294 (1994) MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Cerveau, D., Lins Neto, A.: Holomorphic foliations in CP(2) having an invariant algebraic curve. Ann. Inst. Fourier 41, 883–903 (1991) MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Chavarriga, J., Llibre, J.: Invariant algebraic curves and rational first integrals for planar polynomial vector fields. J. Differ. Equ. 169, 1–16 (2001) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chavarriga, J., Giacomini, H., Giné, J., Llibre, J.: Darboux integrability and the inverse integrating factor. J. Differ. Equ. 194, 116–139 (2003) zbMATHCrossRefGoogle Scholar
  7. 7.
    Christopher, C.: Liouvillian first integrals of second order polynomial differential equations. Electron. J. Differ. Equ. 1999(49), 1–7 (1999) MathSciNetGoogle Scholar
  8. 8.
    Christopher, C., Llibre, J.: Algebraic aspects of integrability for polynomial systems. Qual. Theory Dyn. Syst. 1, 71–95 (1999) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Christopher, C., Llibre, J.: Integrability via invariant algebraic curves for planar polynomial differential systems. Ann. Differ. Equ. 16, 5–19 (2000) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Christopher, C., Llibre, J., Pantazi, C., Walcher, S.: Inverse problems for multiple invariant curves. Proc. R. Soc. Edinb. A 137, 1197–1226 (2007) MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Christopher, C., Llibre, J., Pantazi, C., Walcher, S.: Inverse problems for invariant algebraic curves: Explicit computations. Proc. R. Soc. Edinb. A 139, 1–16 (2009) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Christopher, C., Llibre, J., Pantazi, C., Walcher, S.: Darboux integrating factors: Inverse problems. J. Differ. Equ. 250, 1–25 (2011) MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Christopher, C., Llibre, J., Pantazi, C., Zhang, X.: Darboux integrability and invariant algebraic curves for planar polynomial systems. J. Phys. A 35, 2457–2476 (2002) MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Coutinho, S.C., Menasché Schechter, L.: Algebraic solutions of plane vector fields. J. Pure Appl. Algebra 213, 144–153 (2009) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Darboux, G.: Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges). Bull. Sci. Math. 2, 60–96 (1878); 123–144; 151–200 Google Scholar
  16. 16.
    Ince, E.L.: Ordinary Differential Equations. Dover, New York (1956) Google Scholar
  17. 17.
    Jouanolou, J.P.: Equations de Pfaff Algébriques. Lectures Notes in Mathematics, vol. 708. Springer, New York (1979) zbMATHGoogle Scholar
  18. 18.
    Llibre, J., Rodriguez, G.: Configurations of limit cycles and planar polynomial vector fields. J. Differ. Equ. 198, 374–380 (2004) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, Berlin (1986) zbMATHCrossRefGoogle Scholar
  20. 20.
    Prelle, M.J., Singer, M.F.: Elementary first integrals of differential equations. Trans. Am. Math. Soc. 279, 613–636 (1983) MathSciNetCrossRefGoogle Scholar
  21. 21.
    Seidenberg, A.: Reduction of singularities of the differential equation Ady=Bdx. Am. J. Math. 40, 248–269 (1968) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shafarevich, I.R.: Basic Algebraic Geometry. Springer, Berlin (1977) zbMATHGoogle Scholar
  23. 23.
    Singer, M.F.: Liouvillian first integrals of differential equations. Trans. Am. Math. Soc. 333, 673–688 (1992) zbMATHCrossRefGoogle Scholar
  24. 24.
    van der Put, M., Singer, M.: Galois Theory in Linear Differential Equations. Springer, New York (2003) CrossRefGoogle Scholar
  25. 25.
    van der Waerden, B.L.: Algebra I, II. Springer, New York (1991) Google Scholar
  26. 26.
    Walcher, S.: Plane polynomial vector fields with prescribed invariant curves. Proc. R. Soc. Edinb. A 130, 633–649 (2000) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Walcher, S.: On the Poincaré problem. J. Differ. Equ. 166, 51–78 (2000) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Colin Christopher
    • 1
  • Jaume Llibre
    • 2
  • Chara Pantazi
    • 3
  • Sebastian Walcher
    • 4
    Email author
  1. 1.Department of Mathematics and StatisticsUniversity of PlymouthPlymouthUK
  2. 2.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  3. 3.Departament de Matemàtica Aplicada IUniversitat Politècnica de Catalunya, (EPSEB)BarcelonaSpain
  4. 4.Lehrstuhl A für MathematikRWTH AachenAachenGermany

Personalised recommendations