Advertisement

Acta Applicandae Mathematicae

, Volume 110, Issue 3, pp 1373–1392 | Cite as

Seven (Lattice) Paths to Log-Convexity

  • Tomislav DošlićEmail author
Article

Abstract

Three new methods for proving log-convexity of combinatorial sequences are presented. Their implementation is demonstrated and their performance is compared with four more familiar approaches in the context of sequences that enumerate various classes of lattice paths.

Keywords

Log-convexity Integer sequences Recurrences Motzkin numbers Catalan numbers Schröder numbers Delannoy numbers Lattice paths 

Mathematics Subject Classification (2000)

05A20 11B83 11B37 05E35 05B50 26A17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Motzkin numbers. Eur. J. Comb. 19, 663–675 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    André, D.: Solution directe du problème résolu par M. Bertrand. C.R. Math. Acad. Sci. Paris 105, 436–437 (1887) Google Scholar
  3. 3.
    Angulo, J.C., Dehesa, J.S.: Atomic-charge log-convexity and radial expectation values. J. Phys. B 24, L299–L306 (1991) CrossRefGoogle Scholar
  4. 4.
    Artin, E.: The Gamma Function. Holt, Rinehart and Winston, New York (1964) zbMATHGoogle Scholar
  5. 5.
    Asai, N., Kubo, I., Kuo, H.-H.: Bell numbers, log-concavity, and log-convexity. Acta Appl. Math. 63, 79–87 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Asai, N., Kubo, I., Kuo, H.-H.: Roles of log-concavity, log-convexity, and growth order in white noise analysis. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4, 59–84 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Banderier, C., Flajolet, P.: Basic analytic combinatorics of directed lattice paths. Theor. Comput. Sci. 281, 37–80 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Banderier, C., Schwer, S.: Why Delannoy numbers. J. Stat. Plan. Inference 135, 40–54 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Barcucci, E., Pinzani, R., Sprugnoli, R.: The Motzkin family. Pure Math. Appl. Ser. A 2, 249–279 (1991) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Baryshnikov, Yu.: IT security investment and Gordon-Loeb’s 1/e rule. Preprint Google Scholar
  11. 11.
    Bender, E.A., Canfield, E.R.: Log-concavity and related properties of the cycle index polynomials. J. Comb. Theory A 74, 56–70 (1996) MathSciNetGoogle Scholar
  12. 12.
    Boche, H., Stanczak, S.: Log-convexity of the minimum total power in CDMA systems with certain quality-of-service guaranteed. IEEE Trans. Inf. Theory 51, 374–381 (2005) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bohr, H., Mollerup, J.: Lærebog i Matematisk Analyse, vol. III. Jul. Gjellerups Forlag, Copenhagen (1922) Google Scholar
  14. 14.
    Bóna, M., Ehrenborg, R.: A combinatorial proof of the log-concavity of the numbers of permutations with k runs. J. Comb. Theory A 90, 293–303 (2000) zbMATHCrossRefGoogle Scholar
  15. 15.
    Brenti, F.: Unimodal, Log-Concave and Pólya Frequency Sequences in Combinatorics. Am. Math. Soc., Providence (1989) Google Scholar
  16. 16.
    Callan, D.: Notes on Motzkin and Schröder numbers. Preprint (2000) Google Scholar
  17. 17.
    Catalan, E.: Note sur une équation aux différences finies. J. Math. Pures Appl. 3, 508–516 (1838) Google Scholar
  18. 18.
    Catalan, E.: Sur les nombres de Segner. Rend. Circ. Mat. Palermo 1, 190–201 (1887) CrossRefGoogle Scholar
  19. 19.
    Deutsch, E.: Dyck path enumeration. Discrete Math. 204, 167–202 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Došlić, T.: Log-balanced combinatorial sequences. Int. J. Math. Math. Sci. 2005(4), 507–522 (2005) zbMATHCrossRefGoogle Scholar
  21. 21.
    Došlić, T., Veljan, D.: Calculus proofs of some combinatorial inequalities. Math. Inequal. Appl. 6, 197–210 (2003) zbMATHMathSciNetGoogle Scholar
  22. 22.
    Došlić, T., Veljan, D.: Logarithmic behavior of some combinatorial sequences. Discrete Math. 308, 2182–2212 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Došlić, T., Svrtan, D., Veljan, D.: Enumerative aspects of secondary structures. Discrete Math. 285, 67–82 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Dulucq, S., Penaud, J.-G.: Interprétation bijective d’une récurrence des nombres de Motzkin. Discrete Math. 256, 671–676 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Klauder, J.R., Penson, K.A., Sixdeniers, J.M.: Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems. Phys. Rev. A 64, 013817–013835 (2001) CrossRefGoogle Scholar
  26. 26.
    Koshy, T.: Catalan Numbers with Applications. Oxford University Press, Oxford (2008) CrossRefGoogle Scholar
  27. 27.
    Kuo, H.H.: White Noise Distribution Theory. Probability and Stochastic Series. CRC Press, Boca Raton (1996) zbMATHGoogle Scholar
  28. 28.
    Kurtz, D.C.: A note on concavity properties of triangular arrays of numbers. J. Comb. Theory A 13, 135–159 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Liu, L.L., Wang, Y.: On the log-convexity of combinatorial sequences. Adv. Appl. Math. 39, 453–476 (2007) zbMATHCrossRefGoogle Scholar
  30. 30.
    Milenkovic, O., Compton, K.J.: Probabilistic transforms for combinatorial urn models. Comb. Probab. Comput. 13, 645–675 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Mohanty, S.G.: Lattice Path Counting and Applications. Academic Press, San Diego (1979) zbMATHGoogle Scholar
  32. 32.
    Motzkin, T.: Relation between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanental preponderance and for non-associative products. Bull. Am. Math. Soc. 54, 352–360 (1948) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Munarini, E., Zagaglia Salvi, N.: Binary strings without zigzags. In: Seminaire Lotharingien de Combinatoire, B49h (2004), 15 pp. Google Scholar
  34. 34.
    Narayana, T.V.: Lattice Path Combinatorics with Statistical Applications. Toronto Univ. Press, Toronto (1979) zbMATHGoogle Scholar
  35. 35.
    Netto, E.: Kombinatorik. In: Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Teubner, Leipzig (1898) Google Scholar
  36. 36.
    Penson, K.A., Solomon, A.I.: Coherent states from combinatorial sequences. In: Quantum Theory and Symmetries (Krakow 2001), pp. 527–530. World Scientific, Singapore (2002) Google Scholar
  37. 37.
    Prelec, D.: Decreasing impatience: a criterion for non-stationary time preference and ‘hyperbolic’ discounting. Scand. J. Econ. 106, 511–532 (2004) CrossRefGoogle Scholar
  38. 38.
    Riordan, J.: Percy Alexander MacMahon: collected papers, book review. Bull. Am. Math. Soc. New Ser. 2, 239–241 (1980) CrossRefMathSciNetGoogle Scholar
  39. 39.
    Sagan, B.: Inductive and injective proofs of log-concavity results. Discrete Math. 68, 281–292 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Schröder, E.: Vier kombinatorische Probleme. Z. Math. Phys. 15, 361–376 (1870) Google Scholar
  41. 41.
    Schuster, P., Stadler, P.F.: Discrete models of biopolymers. In: Crabbe, J., Konopka, A., Drew, M. (eds.) Handbook of Computational Chemistry and Biology, pp. 187–221. Dekker, New York (2004) Google Scholar
  42. 42.
    Schwer, S.R., Autebert, J.-M.: Henri-Auguste Delannoy, une biographie. Math. Soc. Sci. 43, 25–67 (2006) MathSciNetGoogle Scholar
  43. 43.
    Shapiro, L.W., Sulanke, R.A.: Bijections for Schröder numbers. Math. Mag. 73, 369–376 (2000) MathSciNetCrossRefGoogle Scholar
  44. 44.
    Sloane, N.J.A.: The on-line encyclopedia of integer sequences. Published electronically at http://www.research.att.com/~njas/sequences/index.html
  45. 45.
    Stanley, R.P.: Log-concave and unimodal sequences in algebra, combinatorics and geometry. Ann. N.Y. Acad. Sci. 576, 500–535 (1989) CrossRefMathSciNetGoogle Scholar
  46. 46.
    Stanley, R.P.: Hipparchus, Plutarch, Schröder, and Hough. Am. Math. Mon. 104, 344–350 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  47. 47.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Univ. Press, Cambridge (1999) Google Scholar
  48. 48.
    Stanley, R.P.: Catalan addendum. Available at http://www-math.mit.edu/~rstan/ec/catadd.pdf
  49. 49.
    Stein, P.R., Waterman, M.S.: On some new sequences generalizing the Catalan and Motzkin numbers. Discrete Math. 26, 261–272 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Sulanke, R.A.: Objects counted by the central Delannoy numbers. J. Integer Seq. 3, 00.2.1 (2000) MathSciNetGoogle Scholar
  51. 51.
    Szegö, G.: Orthogonal Polynomials. AMS, New York (1959) zbMATHGoogle Scholar
  52. 52.
    Takacs, L.: On the ballot theorems. In: Balakrishnan, N. (ed.) Advances in Combinatorial Methods and Applications to Probability and Statistics, pp. 98–114. Birkhäuser, Boston (1979) Google Scholar
  53. 53.
    Warde, W.D., Katti, S.K.: Infinite divisibility of discrete distributions II. Ann. Math. Stat. 42, 1088–1090 (1964) CrossRefMathSciNetGoogle Scholar
  54. 54.
    Weiss, M.: Theorems on log-convex disposition curves in drug and tracer kinetics. J. Theor. Biol. 116, 355–368 (1985) CrossRefGoogle Scholar
  55. 55.
    Weiss, M.: Generalizations in linear pharmacokinetics using properties of certain classes of residence time distributions. I. Log-convex drug disposition curves. J. Pharmacokinet. Biopharm. 14, 635–657 (1986) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Faculty of Civil EngineeringUniversity of ZagrebZagrebCroatia

Personalised recommendations