An Algebraic Approach to Physical Scales
Article
First Online:
- 94 Downloads
- 14 Citations
Abstract
This paper is aimed at introducing an algebraic model for physical scales and units of measurement. This goal is achieved by means of the concept of “positive space” and its rational powers. Positive spaces are “semi-vector spaces” on which the group of positive real numbers acts freely and transitively through the scalar multiplication. Their tensor multiplication with vector spaces yields “scaled spaces” that are suitable to describe spaces with physical dimensions mathematically. We also deal with scales regarded as fields over a given background (e.g., spacetime).
Keywords
Semi-vector spaces Scales Units of measurementMathematics Subject Classification (2000)
15A69 12K10 16Y60 70SxxPreview
Unable to display preview. Download preview PDF.
References
- 1.Abraham, R., Marsden, J.: Foundations of Mechanics, 2nd edn. Benjamin, Elmsford (1978) zbMATHGoogle Scholar
- 2.Barenblatt, G.I.: Scaling. Cambridge Texts in Applied Mathematics. Cambridge University, Cambridge (2003) zbMATHGoogle Scholar
- 3.Bogoliubov, N.N., Shirkof, D.V.: Quantum Fields. The Benjamin/Cummings, Redwood City (1983) zbMATHGoogle Scholar
- 4.Butler, Kim Ki-Hang: The number of idempotents in (0,1)-matrix semigroups. Linear Algebra Appl. 5, 233–246 (1972) zbMATHCrossRefMathSciNetGoogle Scholar
- 5.Canarutto, D.: Possibly degenerate tetrad gravity and Maxwell-Dirac fields. J. Math. Phys. 39(9), 4814–4823 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
- 6.Canarutto, D.: Two-spinors, field theories and geometric optics in curved spacetime. Acta Appl. Math. 62(1), 187–224 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
- 7.Canarutto, D.: “Minimal geometric data” approach to Dirac algebra, spinor groups and field theories. Int. J. Geom. Met. Mod. Phys. 4(6), 1005–1040 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
- 8.Canarutto, D., Jadczyk, A., Modugno, M.: Quantum mechanics of a spin particle in a curved spacetime with absolute time. Rep. Math. Phys. 36(1), 95–140 (1995) MathSciNetGoogle Scholar
- 9.Cohen-Tannoudji, C., Diu, B., Laloë, F.: Méchanique Quantique, vols. I–II. Collection Enseignement des Sciences, vol. 16. Hermann, Paris (1977/1986) Google Scholar
- 10.Darton, M., Clark, J.O.E.: The Dent Dictionary of Measurement. Dent, London (1994) Google Scholar
- 11.Duff, M.J., Okun, L.B., Veneziano, G.: Trialogue on the number of fundamental constants. ArXiv:physics/0110060v3 [physics:clas-ph], 13 Sep. 2002
- 12.Gähler, W., Gähler, S.: Contributions to fuzzy analysis. Fuzzy Sets Syst. 105, 201–224 (1999) zbMATHCrossRefGoogle Scholar
- 13.Golan, J.S.: Semirings and Their Applications. Kluwer Academic, Dordrecht (1999) zbMATHGoogle Scholar
- 14.Greub, W.: Multilinear Algebra, 2nd edn. Springer, New York (1978) zbMATHGoogle Scholar
- 15.Hebisch, U., Weinert, H.J.: Semirings—Algebraic Theory and Applications in Computer Science. World Scientific, Singapore (1993) zbMATHGoogle Scholar
- 16.Husemoller, D.: Fibre Bundles. GTM, vol. 20. Springer, New York (1975) zbMATHGoogle Scholar
- 17.Janyška, J., Modugno, M.: Covariant Schrödinger operator. J. Phys.: A, Math. Gen. 35, 8407–8434 (2002) zbMATHCrossRefGoogle Scholar
- 18.Janyška, J., Modugno, M.: Hermitian vector fields and special phase functions. Int. J. Geom. Meth. Mod. Phys. 3(4), 1–36 (2006) Google Scholar
- 19.Janyška, J., Modugno, M.: Geometric structure of the classical relativistic phase space phase functions. Int. J. Geom. Meth. Mod. Phys. 5(5), 1–56 (2008) Google Scholar
- 20.Janyška, J., Modugno, M., Vitolo, R.: Semi-vector spaces and units of measurement. Commutative Algebra (math.AC), 5 Oct. 2007. arXiv:0710.1313
- 21.Jerrard, H.G., McNeill, D.B.: A Dictionary of Scientific Units, 6th edn. Chapman and Hall, London (1992) Google Scholar
- 22.Ketov, S.V.: Conformal Field Theory. World Scientific, Singapore (1995) zbMATHGoogle Scholar
- 23.Matzas, G.E.A., Pleitez, V., Saa, A., Vanzella, D.A.T.: The number of dimensional fundamental constants. ArXiv:0711.4276v2 [physics. class-ph], 4 Dec. 2007
- 24.Misner, C.W., Thorne, K.S., Wheeeler, J.A.: Gravitation. Freeman, New York (1973) Google Scholar
- 25.Modugno, M., Saller, D., Tolksdorf, J.: Classification of infinitesimal symmetries in covariant classical mechanics. J. Math. Phys. 47, 1–27 (2006) CrossRefMathSciNetGoogle Scholar
- 26.Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, New York (1991) Google Scholar
- 27.Panofsky, W.K.H., Phillips, M.: Classical Electricity and Magnetism. Addison-Wesley, Reading (1956) Google Scholar
- 28.Pap, E.: Integration of functions with values in complete semi-vector space. In: Measure Theory, Oberwolfach 1979. Lecture Notes in Mathematics, vol. 794, pp. 340–347. Springer, Berlin (1980) CrossRefGoogle Scholar
- 29.Prakash, P., Sertel, M.R.: Topological semivector spaces, convexity and fixed point theory. Semigroup Forum 9, 117–138 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
- 30.Prakash, P., Sertel, M.R.: Hyperspaces of topological vector spaces: their embedding in topological vector spaces. Proc. AMS 61(1), 163–168 (1976) CrossRefGoogle Scholar
- 31.Saller, D., Vitolo, R.: Symmetries in covariant classical mechanics. J. Math. Phys. 41(10), 6824–6842 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
- 32.Takahashi, M.: On the bordism categories III. Math. Sem. Notes Kobe Univ. 10, 211–236 (1982) zbMATHMathSciNetGoogle Scholar
- 33.Uzan, J.P.: The fundamental constants and their variation: observational status and their theoretical motivations. ArXiv:hep-ph0205340v1, 30 May 2002
- 34.Vitolo, R.: Quantum structures in Galilei general relativity. Ann. Inst. Henri Poincaré 70 (1999) Google Scholar
- 35.Vitolo, R.: Quantum structures in Einstein general relativity. Lett. Math. Phys. 51, 119–133 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2009