Advertisement

Acta Applicandae Mathematicae

, Volume 110, Issue 2, pp 955–972 | Cite as

Bipotentials for Non-monotone Multivalued Operators: Fundamental Results and Applications

  • Marius Buliga
  • Géry de Saxcé
  • Claude Vallée
Article

Abstract

This is a survey of recent results about bipotentials representing multivalued operators. The notion of bipotential is based on an extension of Fenchel’s inequality, with several interesting applications related to non-associated constitutive laws in non-smooth mechanics, such as Coulomb frictional contact or non-associated Drücker-Prager model in plasticity.

Relations between bipotentials and Fitzpatrick functions are described. Selfdual Lagrangians, introduced and studied by Ghoussoub, can be seen as bipotentials representing maximal monotone operators. We show that bipotentials can represent some monotone but not maximal operators, as well as non-monotone operators.

Further we describe results concerning the construction of a bipotential which represents a given non-monotone operator, by using convex Lagrangian covers or bipotential convex covers. At the end we prove a new reconstruction theorem for a bipotential from a convex Lagrangian cover, this time using a convexity notion related to a minimax theorem of Fan.

Keywords

Bipotentials Non-monotone multivalued operators Implicit normality rules 

Mathematics Subject Classification (2000)

49J53 49J52 26B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berga, A., de Saxcé, G.: Elastoplastic finite element analysis of soil problems with implicit standard material constitutive laws. Rev. Eur. Élém. Finis 3(3), 411–456 (1994) zbMATHGoogle Scholar
  2. 2.
    Bodovillé, G.: On damage and implicit standard materials. C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 327(8), 715–720 (1999) zbMATHGoogle Scholar
  3. 3.
    Bodovillé, G., de Saxcé, G.: Plasticity with non-linear kinematic hardening: modelling and shakedown analysis by the bipotential approach. Eur. J. Mech. A Solids 20, 99–112 (2001) zbMATHCrossRefGoogle Scholar
  4. 4.
    Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13(3–4), 561–586 (2006) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis: An Introduction. CMS Books. Springer, Berlin (2005) Google Scholar
  6. 6.
    Bouby, C., de Saxcé, G., Tritsch, J.-B.: A comparison between analytical calculations of the shakedown load by the bipotential approach and step-by-step computations for elastoplastic materials with nonlinear kinematic hardening. Int. J. Solids Struct. 43(9), 2670–2692 (2006) zbMATHCrossRefGoogle Scholar
  7. 7.
    Bousshine, L., Chaaba, A., de Saxcé, G.: Softening in stress-strain curve for Drücker-Prager non-associated plasticity. Int. J. Plast. 17(1), 21–46 (2001) zbMATHCrossRefGoogle Scholar
  8. 8.
    Bousshine, L., Chaaba, A., de Saxcé, G.: Plastic limit load of plane frames with frictional contact supports. Int. J. Mech. Sci. 44(11), 2189–2216 (2002) zbMATHCrossRefGoogle Scholar
  9. 9.
    Bousshine, L., Chaaba, A., de Saxcé, G.: A new approach to shakedown analysis for non-standard elastoplastic material by the bipotential. Int. J. Plast. 19(5), 583–598 (2003) zbMATHCrossRefGoogle Scholar
  10. 10.
    Buliga, M., de Saxcé, G., Vallée, C.: Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15(1), 87–104 (2008) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Buliga, M., de Saxcé, G., Vallée, C.: Non-maximal cyclically monotone graphs and construction of a bipotential for the Coulomb’s dry friction law. J. Convex Anal. (to appear). Available as arXiv e-print at http://arxiv.org/abs/0802.1140
  12. 12.
    Dang Van, K., de Saxcé, G., Maier, G., Polizzotto, C., Ponter, A., Siemaszko, A., Weichert, D.: Inelastic behaviour of structures under variable repeated loads. In: Weichert, D., Maier, G. (eds.) CISM International Centre for Mechanical Sciences, Courses and Lectures, vol. 432. Springer, Wien (2002) Google Scholar
  13. 13.
    de Saxcé, G.: Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives. C. R. Acad. Sci., Paris, Sér. II 314, 125–129 (1992) zbMATHGoogle Scholar
  14. 14.
    de Saxcé, G.: The bipotential method, a new variational and numerical treatment of the dissipative laws of materials. In: Proc. 10th Int. Conf. on Mathematical and Computer Modelling and Scientific Computing, Boston (1995) Google Scholar
  15. 15.
    de Saxcé, G., Bousshine, L.: On the extension of limit analysis theorems to the non-associated flow rules in soils and to the contact with Coulomb’s friction. In: Proc. XI Polish Conference on Computer Methods in Mechanics, Kielce, 1993, vol. 2, pp. 815–822 (1993) Google Scholar
  16. 16.
    de Saxcé, G., Bousshine, L.: Limit analysis theorems for the implicit standard materials: application to the unilateral contact with dry friction and the non-associated flow rules in soils and rocks. Int. J. Mech. Sci. 40(4), 387–398 (1998) zbMATHCrossRefGoogle Scholar
  17. 17.
    de Saxcé, G., Bousshine, L.: Implicit standard materials. In: Weichert, D., Maier, G. (eds.) Inelastic Behaviour of Structures under Variable Repeated Loads. CISM Courses and Lectures, vol. 432. Springer, Wien (2002) Google Scholar
  18. 18.
    de Saxcé, G., Feng, Z.Q.: New inequality and functional for contact with friction: the implicit standard material approach. Mech. Struct. Mach. 19(3), 301–325 (1991) CrossRefGoogle Scholar
  19. 19.
    de Saxcé, G., Feng, Z.-Q.: The bipotential method: a constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. 28(4–8), 225–245 (1998) zbMATHGoogle Scholar
  20. 20.
    de Saxcé, G., Hjiaj, M.: Sur l’intégration numérique de la loi d’écrouissage cinématique non-linéaire. In: Actes du 3ème Colloque National en Calcul des Structures, Giens, 1997, Presses Académiques de l’Ouest, pp. 773–778 (1997) Google Scholar
  21. 21.
    de Saxcé, G., Tritsch, J.-B., Hjiaj, M.: Shakedown of Elastoplastic Materials with non-linear kinematical hardening rule by the bipotential Approach. In: Weichert, D., Maier, G. (eds.) Solid Mechanics and Its Applications, vol. 83, pp. 167–182. Kluwer Academic, Dordrecht (2000) Google Scholar
  22. 22.
    de Saxcé, G., Fortin, J., Millet, O.: About the numerical simulation of the dynamics of granular media and the definition of the mean stress tensor. Mech. Mater. 36(12), 1175–1184 (2004) CrossRefGoogle Scholar
  23. 23.
    Feng, Z.-Q., Hjiaj, M., de Saxcé, G., Mróz, Z.: Effect of frictional anisotropy on the quasistatic motion of a deformable solid sliding on a planar surface. Comput. Mech. 37, 349–361 (2006) zbMATHCrossRefGoogle Scholar
  24. 24.
    Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization, Canberra, 1988, pp. 59–65. Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra (1988) Google Scholar
  25. 25.
    Fortin, J., de Saxcé, G.: Modélisation numérique des milieux granulaires par l’approche du bipotentiel. C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 327, 721–724 (1999) zbMATHGoogle Scholar
  26. 26.
    Fortin, J., Hjiaj, M., de Saxcé, G.: An improved discrete element method based on a variational formulation of the frictional contact law. Comput. Geotech. 29(8), 609–640 (2002) CrossRefGoogle Scholar
  27. 27.
    Fortin, J., Millet, O., de Saxcé, G.: Numerical simulation of granular materials by an improved discrete element method. Int. J. Numer. Methods Eng. 62, 639–663 (2005) zbMATHCrossRefGoogle Scholar
  28. 28.
    Ghoussoub, N.: Selfdual Partial Differential Systems and Their Variational Principles. Universitext. Springer, Berlin (2007) Google Scholar
  29. 29.
    Ghoussoub, N.: A variational theory for monotone vector fields (2008). http://arxiv.org/abs/0804.0230
  30. 30.
    Ghoussoub, N., Moameni, A.: Selfdual variational principles for periodic solutions of Hamiltonian and other dynamical systems. Commun. Partial Differ. Equ. 32(4–6), 771–795 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Halphen, B.: Nguyen Quoc Son: Sur les matériaux standard généralisés. J. Méc., Paris 14, 39–63 (1975) zbMATHMathSciNetGoogle Scholar
  32. 32.
    Hjiaj, M., de Saxcé, G., Abriak, N.-E.: The bipotential approach: some applications. In: Topping, B.H.V. (ed.) Advances in Finite Element Technology, pp. 341–348. Civil-Comp Press, Edinburgh (1996) CrossRefGoogle Scholar
  33. 33.
    Hjiaj, M., Abriak, N.-E., de Saxcé, G.: The bipotential approach for soil plasticity. In: Désidéri, J.-A., (eds.) Numerical Methods in Engineering ’96, pp. 918–923. Wiley, Chichester (1996) Google Scholar
  34. 34.
    Hjiaj, M., Bodovillé, G., de Saxcé, G.: Matériaux viscoplastiques et loi de normalité implicites. C. R. Acad. Sci., Paris, Sér. II, Fasc. b, Méc. Phys. Astron. 328, 519–524 (2000) zbMATHGoogle Scholar
  35. 35.
    Hjiaj, M., Fortin, J., de Saxcé, G.: A complete stress update algorithm for the non-associated Drücker-Prager model including treatment of the apex. Int. J. Eng. Sci. 41(10), 1109–1143 (2003) CrossRefGoogle Scholar
  36. 36.
    Hjiaj, M., Feng, Z.-Q., de Saxcé, G., Mróz, Z.: Three dimensional finite element computations for frictional contact problems with on-associated sliding rule. Int. J. Numer. Methods Eng. 60(12), 2045–2076 (2004) zbMATHCrossRefGoogle Scholar
  37. 37.
    Fan, K.: On a theorem of Weyl concerning eigenvalues of linear transformations. Proc. Natl. Acad. Sci. U.S.A. 35, 652–655 (1949) CrossRefGoogle Scholar
  38. 38.
    Fan, K.: Minimax theorems. Proc. Natl. Acad. Sci. U.S.A. 39, 42–47 (1953) zbMATHCrossRefGoogle Scholar
  39. 39.
    Laborde, P., Renard, Y.: Fixed points strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31, 415–441 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970), p. 238 zbMATHGoogle Scholar
  41. 41.
    Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958) zbMATHMathSciNetGoogle Scholar
  42. 42.
    Vallée, C., Lerintiu, C., Fortuné, D., Ban, M., de Saxcé, G.: Hill’s bipotential. In: Mihailescu-Suliciu, M. (ed.) New Trends in Continuum Mechanics. Theta Series in Advanced Mathematics, pp. 339–351. Theta Foundation, Bucharest (2005) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Marius Buliga
    • 1
  • Géry de Saxcé
    • 2
  • Claude Vallée
    • 3
  1. 1.“Simion Stoilow” Institute of Mathematics of the Romanian AcademyBucharestRomania
  2. 2.Laboratoire de Mécanique de Lille, UMR CNRS 8107Université des Sciences et Technologies de LilleVilleneuve d’Ascq cedexFrance
  3. 3.Laboratoire de Mécanique des Solides, UMR 6610UFR SFA-SP2MIFuturoscope-Chasseneuil cedexFrance

Personalised recommendations