Advertisement

Acta Applicandae Mathematicae

, Volume 110, Issue 1, pp 477–497 | Cite as

Ostrowski Type Inequalities on Time Scales for Double Integrals

  • Wenjun LiuEmail author
  • Quốc Anh Ngô
  • Wenbing Chen
Article

Abstract

In this paper we first derive an Ostrowski type inequality on time scales for double integrals via ΔΔ-integral which unify corresponding continuous and discrete versions. We then replace the ΔΔ-integral by the -, Δ-, and Δ-integrals and get completely analogous results.

Keywords

Ostrowski inequality Double integrals Time scales 

Mathematics Subject Classification (2000)

26D15 39A10 39A12 39A13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, R., Bohner, M., Peterson, A.: Inequalities on time scales: A survey. Math. Inequal. Appl. 4(4), 535–557 (2001) zbMATHMathSciNetGoogle Scholar
  2. 2.
    Almeida, R., Torres, D.F.M.: Isoperimetric problems on time scales with nabla derivatives, J. Vibr. Control (in press). http://arxiv.org/abs/0811.3650
  3. 3.
    Atici, F.M., Biles, D.C., Lebedinsky, A.: An application of time scales to economics. Math. Comput. Model. 43(7–8), 718–726 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bohner, M., Guseinov, G.S.: Partial differentiation on time scales. Dyn. Syst. Appl. 13(3–4), 351–379 (2004) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bohner, M., Guseinov, G.S.: Multiple integration on time scales. Dyn. Syst. Appl. 14(3–4), 579–606 (2005) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Bohner, M., Guseinov, G.S.: Double integral calculus of variations on time scales. Comput. Math. Appl. 54, 45–57 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bohner, M., Matthews, T.: The Grüss inequality on time scales. Commun. Math. Anal. 3(1), 1–8 (2007) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Bohner, M., Matthews, T.: Ostrowski inequalities on time scales. J. Inequal. Pure Appl. Math. 9(1), 8 (2008) MathSciNetGoogle Scholar
  9. 9.
    Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Basel (2001) zbMATHGoogle Scholar
  10. 10.
    Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhäuser, Basel (2003) zbMATHGoogle Scholar
  11. 11.
    Dragomir, S.S., Wang, S.: A new inequality of Ostrowski’s type in L1 norm and applications to some special means and to some numerical quadrature rules. Tamkang J. Math. 28, 239–244 (1997) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Dragomir, S.S., Wang, S.: Applications of Ostrowski’s inequality to the estimation of error bounds for some special means and some numerical quadrature rules. Appl. Math. Lett. 11, 105–109 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dragomir, S.S., Cerone, P., Barnett, N.S., Roumeliotis, J.: An inequality of the Ostrowski type for double integrals and applications for cubature formulae. RGMIA Res. Rep. Collect. 2, 781–796 (1999) Google Scholar
  14. 14.
    Ferreira, R.A.C., Sidi Ammi, M.R., Torres, D.F.M.: Diamond-alpha integral inequalities on time scales. Int. J. Math. Stat. 5(A09), 52–59 (2009) MathSciNetGoogle Scholar
  15. 15.
    Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrmsmannigfaltingkeiten. Ph.D. thesis, Univarsi. Würzburg (1988) Google Scholar
  16. 16.
    Hilscher, R.: A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 141, 219–226 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B.: Dynamic Systems on Measure Chains. Kluwer Academic, Dordrecht (1996) zbMATHGoogle Scholar
  18. 18.
    Liu, W.J., Ngô, Q.A.: An Ostrowski-Grüss type inequality on time scales. arXiv:0804.3231
  19. 19.
    Liu, W.J., Ngô, Q.A.: A generalization of Ostrowski inequality on time scales for k points. Appl. Math. Comput. 203, 754–760 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Liu, W.J., Ngô, Q.A.: An Ostrowski type inequality on time scales for functions whose second derivatives are bounded. In: Inequality Theory and Applications, vol 6. Nova Science Publishers, New York (2009, to appear) Google Scholar
  21. 21.
    Liu, W.J., Xue, Q.L., Wang, S.F.: Several new perturbed Ostrowski-like type inequalities. J. Inequal. Pure Appl. Math. 8(4), 6 (2007) MathSciNetGoogle Scholar
  22. 22.
    Liu, W.J., Li, C.C., Hao, Y.M.: Further generalization of some double integral inequalities and applications. Acta. Math. Univ. Comen. 77(1), 147–154 (2008) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Liu, W.J., Ngô, Q.A., Chen, W.B.: A perturbed Ostrowski type inequality on time scales for k points for functions whose second derivatives are bounded. J. Inequal. Appl. 2008. Article ID 597241, 12 p. Google Scholar
  24. 24.
    Martins, N., Torres, D.F.M.: Calculus of variations on time scales with nabla derivatives. Nonlinear Anal. (2008). doi: 10.1016/j.na.2008.11.035 Google Scholar
  25. 25.
    Mitrinović, D.S., Pecarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht (1991) zbMATHGoogle Scholar
  26. 26.
    Mitrinović, D.S., Pecarić, J., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993) zbMATHGoogle Scholar
  27. 27.
    Ostrowski, A.M.: Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmitelwert. Comment. Math. Helv. 10, 226–227 (1938) CrossRefMathSciNetGoogle Scholar
  28. 28.
    Ozkan, U.M., Yildirim, H.: Ostrowski type inequality for double integrals on time scales. Acta Appl. Math. (2009). doi: 10.1007/s10440-008-9407-z Google Scholar
  29. 29.
    Ozkan, U.M., Yildirim, H.: Steffensen’s integral inequality on time scales. J. Inequal. Appl. 2007. Article ID 46524, 10 p. Google Scholar
  30. 30.
    Ozkan, U.M., Yildirim, H.: Hardy-knopp-type inequalities on time scales. Dyn. Syst. Appl. 17, 477–486 (2008) MathSciNetGoogle Scholar
  31. 31.
    Ozkan, U.M., Sarikaya, M.Z., Yildirim, H.: Extensions of certain integral inequalities on time scales. Appl. Math. Lett. 21, 993–1000 (2008) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Pachpatte, B.G.: On an inequality of Ostrowski type in three independent variables. J. Math. Anal. Appl. 249, 583–591 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Rogers Jr., J.W., Sheng, Q.: Notes on the diamond-α dynamic derivative on time scales. J. Math. Anal. Appl. 326(1), 228–241 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Anal.: Real World Appl. 7(3), 395–413 (2008) CrossRefMathSciNetGoogle Scholar
  35. 35.
    Sidi Ammi, M.R., Ferreira, R.A.C., Torres, D.F.M.: Diamond-α Jensen’s inequality on time scales. J. Inequal. Appl. 2008 (2008). Article ID 576876, 13 p. Google Scholar
  36. 36.
    Wong, F.-H., Yu, S.-L., Yeh, C.-C.: Anderson’s inequality on time scales. Appl. Math. Lett. 19, 931–935 (2007) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.College of Mathematics and PhysicsNanjing University of Information Science and TechnologyNanjingChina
  2. 2.Department of Mathematics College of ScienceVietnam National UniversityHanoiVietnam
  3. 3.Department of MathematicsNational University of SingaporeSingaporeSingapore

Personalised recommendations