Acta Applicandae Mathematicae

, Volume 108, Issue 3, pp 603–615 | Cite as

Commutativity and Ideals in Pre-crystalline Graded Rings

  • Johan ÖinertEmail author
  • Sergei D. Silvestrov


Pre-crystalline graded rings constitute a class of rings which share many properties with classical crossed products. Given a pre-crystalline graded ring \(\mathcal{A}\) , we describe its center, the commutant \(C_{\mathcal{A}}(\mathcal{A}_{0})\) of the degree zero grading part, and investigate the connection between maximal commutativity of \(\mathcal{A}_{0}\) in \(\mathcal{A}\) and the way in which two-sided ideals intersect \(\mathcal{A}_{0}\) .


Crossed products Skew group rings Graded rings Ideals Commutative subrings 

Mathematics Subject Classification (2000)

16S35 16W50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Caenepeel, S., Van Oystaeyen, F.: Brauer Groups and the Cohomology of Graded Rings, xii+261 p. Monographs and Textbooks in Pure and Applied Mathematics, vol. 121. Marcel Dekker, New York (1988) zbMATHGoogle Scholar
  2. 2.
    Cohen, M., Montgomery, S.: Group-graded rings, smash products and group actions. Trans. Am. Math. Soc. 282(1), 237–258 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fisher, J.W., Montgomery, S.: Semiprime skew group rings. J. Algebra 52(1), 241–247 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Formanek, E., Lichtman, A.I.: Ideals in group rings of free products. Israel J. Math. 31(1), 101–104 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hellström, L., Silvestrov, S.: Two-sided ideals in q-deformed Heisenberg algebras. Expo. Math. 23(2), 99–125 (2005) zbMATHMathSciNetGoogle Scholar
  6. 6.
    Hellström, L., Silvestrov, S.D.: Commuting Elements in q-Deformed Heisenberg Algebras, xiv+257 p. World Scientific, River Edge (2000) zbMATHGoogle Scholar
  7. 7.
    Herstein, I.N.: Noncommutative Rings, xi+199 p. Carus Mathematical Monographs, vol 15. Mathematical Association of America, New York (1968) zbMATHGoogle Scholar
  8. 8.
    Irving, R.S.: Prime ideals of Ore extensions over commutative rings. J. Algebra 56(2), 315–342 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Irving, R.S.: Prime ideals of ore extensions over commutative rings II. J. Algebra 58(2), 399–423 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Jacobson, N., Structure of Rings, ix+299 p. American Mathematical Society Colloquium Publications, vol. 37. AMS, Providence (1964) Google Scholar
  11. 11.
    Launois, S., Lenagan, T.H., Rigal, L.: Quantum unique factorisation domains. J. Lond. Math. Soc. (2) 74(2), 321–340 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Leroy, A., Matczuk, J.: Primitivity of skew polynomial and skew Laurent polynomial rings. Commun. Algebra, 24(7), 2271–2284 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lorenz, M., Passman, D.S.: Centers and prime ideals in group algebras of polycyclic-by-finite groups. J. Algebra 57(2), 355–386 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lorenz, M., Passman, D.S.: Prime ideals in crossed products of finite groups. Israel J. Math. 33(2), 89–132 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lorenz, M., Passman, D.S.: Addendum—prime ideals in crossed products of finite groups. Israel J. Math. 35(4), 311–322 (1980) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Marubayashi, H., Nauwelaerts, E., Van Oystaeyen, F.: Graded rings over arithmetical orders. Commun. Algebra 12(5–6), 745–775 (1984) zbMATHCrossRefGoogle Scholar
  17. 17.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian Rings, xvi+596 p. Pure and Applied Mathematics, and Wiley-Interscience Series of Texts, Monographs and Tracts. Wiley, Chichester (1987) zbMATHGoogle Scholar
  18. 18.
    Montgomery, S., Passman, D.S.: Crossed products over prime rings. Israel J. Math. 31(3–4), 224–256 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Nǎstǎsescu, C., Van Oystaeyen, F.: Methods of Graded Rings, xiv+304 p. Lecture Notes in Mathematics, vol. 1836. Springer, Berlin (2004) Google Scholar
  20. 20.
    Nauwelaerts, E., Van Oystaeyen, F.: Introducing crystalline graded algebras. Algebr. Represent. Theory 11(2), 133–148 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Neijens, T., Van Oystaeyen, F., Yu, W.W.: Centers of certain crystalline graded rings. Preprint in preparation (2007) Google Scholar
  22. 22.
    Öinert, J., Silvestrov, S.D.: On a correspondence between ideals and commutativity in algebraic crossed products. J. Gen. Lie Theory Appl. 2(3), 216–220 (2008) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Öinert, J., Silvestrov, S.D.: Commutativity and ideals in algebraic crossed products. J. Gen. Lie Theory Appl. 2(4), 287–302 (2008) zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Öinert, J., Silvestrov, S.D.: Crossed product-like and pre-crystalline graded rings. In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.) Generalized Lie Theory in Mathematics, Physics and Beyond, pp. 281–296, Chap. 24. Springer, Berlin/Heidelberg (2008) Google Scholar
  25. 25.
    Passman, D.S.: The Algebraic Structure of Group Rings, xiv+720 p. Pure and Applied Mathematics. Wiley-Interscience, New York (1977) zbMATHGoogle Scholar
  26. 26.
    Rowen, L.: Some results on the center of a ring with polynomial identity. Bull. Am. Math. Soc. 79, 219–223 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Svensson, C., Silvestrov, S., de Jeu, M.: Dynamical systems and commutants in crossed products. Int. J. Math. 18(4), 455–471 (2007) zbMATHCrossRefGoogle Scholar
  28. 28.
    Svensson, C., Silvestrov, S., de Jeu, M.: Connections between dynamical systems and crossed products of Banach algebras by ℤ. In: Janas, J., Kurasov, P., Laptev, A., Naboko, S., Stolz, G. (eds.) Methods of Spectral Analysis in Mathematical Physics, Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP) 2006, Lund, Sweden. Operator Theory: Advances and Applications, vol. 186, pp. 391–401. Birkhäuser, Basel (2009) Google Scholar
  29. 29.
    Svensson, C., Silvestrov, S., de Jeu, M.: Dynamical systems associated to crossed products. Preprints in Mathematical Sciences 2007:22, LUFTMA-5088-2007, Leiden Mathematical Institute report 2007-30. arxiv:0707.1881. To appear in Acta Appl. Math.
  30. 30.
    Tomiyama, J.: Invitation to C *-Algebras and Topological Dynamics. x+167 p. World Scientific Advanced Series in Dynamical Systems, vol. 3. World Scientific, Singapore (1987) Google Scholar
  31. 31.
    Tomiyama, J.: The Interplay between Topological Dynamics and Theory of C *-Algebras, vi+69 p. Lecture Notes Series, vol. 2. Seoul National University, Research Institute of Mathematics, Global Anal. Research Center, Seoul (1992) zbMATHGoogle Scholar
  32. 32.
    Tomiyama, J.: The interplay between topological dynamics and theory of C *-algebras II (after the Seoul lecture note 1992). Sūrikaisekikenkyūsho Kōkyūroku 1151, 1–71 (2000) zbMATHGoogle Scholar
  33. 33.
    Zeller-Meier, G.: Produits croisés d’une C *-algèbre par un groupe d’automorphismes. J. Math. Pures Appl. (9) 47, 101–239 (1968) zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Centre for Mathematical SciencesLund UniversityLundSweden

Personalised recommendations