Advertisement

Acta Applicandae Mathematicae

, Volume 107, Issue 1–3, pp 75–90 | Cite as

Duals of Frame Sequences

  • Christopher HeilEmail author
  • Yoo Young Koo
  • Jae Kun Lim
Article

Abstract

Frames provide unconditional basis-like, but generally nonunique, representations of vectors in a Hilbert space H. The redundancy of frame expansions allows the flexibility of choosing different dual sequences to employ in frame representations. In particular, oblique duals, Type I duals, and Type II duals have been introduced in the literature because of the special properties that they possess. A Type I dual is a dual such that the range of its synthesis operator is contained in the range of the synthesis operator of the original frame sequence, and a Type II dual is a dual such that the range of its analysis operator is contained in the range of the analysis operator of the original frame sequence. This paper proves that all Type I and Type II duals are oblique duals, but not conversely, and characterizes the existence of oblique and Type II duals in terms of direct sum decompositions of H, as well as characterizing when the Type I, Type II, and oblique duals will be unique. These results are also applied to the case of shift-generated sequences that are frames for shift-invariant subspaces of L 2(ℝ d ).

Keywords

Angle between subspaces Frame Frame sequence Gramian operator Oblique dual Oblique projection Perturbation Riesz basis Type I dual Type II dual 

Mathematics Subject Classification (2000)

42C15 46C99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedetto, J.J., Li, S.: The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal. 5, 389–427 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benedetto, J.J., Powell, A., Yilmaz, O.: Sigma-Delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52, 1990–2005 (2006) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bishop, S., Heil, C., Koo, Y.Y., Lim, J.K.: Invariances of frame sequences under perturbations. Preprint (2008) Google Scholar
  4. 4.
    de Boor, C., DeVore, R., Ron, A.: The structure of finitely generated shift-invariant subspaces of L 2(ℝd). J. Funct. Anal. 119, 37–78 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bownik, M.: The structure of shift-invariant subspaces of L 2(ℝn). J. Funct. Anal. 177(2), 282–309 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Casazza, P.G., Christensen, O., Kalton, N.J.: Frames of translates. Collect. Math. 52, 35–54 (2001) zbMATHMathSciNetGoogle Scholar
  7. 7.
    Candès, E.J., Donoho, D.L.: Continuous curvet transform: II. Discretization and frames. Appl. Comput. Harmon. Anal. 19, 198–222 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Christensen, O.: Frames and pseudo-inverses. J. Math. Anal. Appl. 195, 401–414 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003) zbMATHGoogle Scholar
  10. 10.
    Christensen, O., Eldar, Y.X.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17, 48–68 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Christensen, O., Kim, R.Y.: Pairs of explicitly given dual Gabor frames in L 2(ℝd). J. Fourier Anal. Appl. 12, 243–255 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990) zbMATHGoogle Scholar
  13. 13.
    Gabardo, J.-P., Han, D.: The uniqueness of the dual of Weyl-Heisenberg subspace frames. Appl. Comput. Harmon. Anal. 17, 226–240 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Groetsch, C.W.: Generalized Inverses of Linear Operators: Representations and Approximation. Marcel Dekker, New York (1977) Google Scholar
  15. 15.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001) zbMATHGoogle Scholar
  16. 16.
    Heil, C., Walnut, D.: Continuous and discrete wavelet transforms. SIAM Rev. 31, 628–666 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Helson, H.: Lectures on Invariant Subspaces. Academic Press, New York (1964) zbMATHGoogle Scholar
  18. 18.
    Hemmat, A.A., Gabardo, J.-P.: The uniqueness of shift-generated duals for frames in shift-invariant subspaces. J. Fourier Anal. Appl. 13, 589–606 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kim, H.O., Kim, R.Y., Lim, J.K.: The infimum cosine angle between two finitely generated shift-invariant spaces and its applications. Appl. Comput. Harmon. Anal. 19, 253–281 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Li, S., Ogawa, H.: Pseudoframes for subspaces with applications. J. Fourier Anal. Appl. 10, 409–431 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Koo, Y.Y., Lim, J.K.: Perturbation of frame sequences and its applications to shift-invariant spaces. Linear Algebra Appl. 420, 295–309 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(R d). Can. J. Math. 47, 1051–1094 (1995) zbMATHMathSciNetGoogle Scholar
  23. 23.
    Strohmer, T., Heath, R.W. Jr.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14, 257–275 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Tang, W.-S.: Oblique projections, biorthogonal Riesz bases and multiwavelets in Hilbert spaces. Proc. Am. Math. Soc. 128, 463–473 (2000) zbMATHCrossRefGoogle Scholar
  25. 25.
    Unser, M., Aldroubi, A.: A general sampling theory for non-ideal acquisition devices. IEEE Trans. Signal Process. 42, 2915–2925 (1994) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher Heil
    • 1
    Email author
  • Yoo Young Koo
    • 1
  • Jae Kun Lim
    • 2
  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Applied MathematicsHankyong National UniversityGyeonggi-doRepublic of Korea

Personalised recommendations