Acta Applicandae Mathematicae

, Volume 110, Issue 1, pp 227–246 | Cite as

On General Mixed Variational Inequalities

  • Muhammad Aslam Noor
  • Khalida Inayat Noor
  • Huma Yaqoob
Article

Abstract

In this paper, we introduce and consider a new class of mixed variational inequalities, which is called the general mixed variational inequality. Using the resolvent operator technique, we establish the equivalence between the general mixed variational inequalities and the fixed-point problems as well as resolvent equations. We use this alternative equivalent formulation to suggest and analyze some iterative methods for solving the general mixed variational inequalities. We study the convergence criteria of the suggested iterative methods under suitable conditions. Using the resolvent operator technique, we also consider the resolvent dynamical systems associated with the general mixed variational inequalities. We show that the trajectory of the dynamical system converges globally exponentially to the unique solution of the general mixed variational inequalities. Our methods of proofs are very simple as compared with others’ techniques. Results proved in this paper may be viewed as a refinement and important generalizations of the previous known results.

Keywords

Variational inequalities Nonconvex functions Fixed-point problem Resolvent operator Resolvent equations Projection operator Convergence Dynamical systems 

Mathematics Subject Classification (2000)

49J40 90C33 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezis, H.: Operateurs Maximaux Monotone et Semigroupes de Contractions dans les Espace d’Hilbert. North-Holland, Amsterdam (1973) Google Scholar
  2. 2.
    Cristescu, G., Lupsa, L.: Non-Connected Convexities and Applications. Kluwer Academic, Dordrecht (2002) MATHGoogle Scholar
  3. 3.
    Daniele, P., Giannessi, F., Maugeri, A.: Equilibrium Problems and Variational Models. Kluwer Academic, London (2003) MATHGoogle Scholar
  4. 4.
    Dong, J., Zhang, D., Nagurney, A.: A projected dynamical systems model of general financial equilibrium with stability analysis. Math. Comput. Appl. 24(2), 35–44 (1996) MATHMathSciNetGoogle Scholar
  5. 5.
    Dupuis, P., Nagurney, A.: Dynamical systems and variational inequalities with applications. Ann. Oper. Res. 44, 19–42 (1993) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Friesz, T.L., Bernstein, D.H., Mehta, N.J., Tobin, R.L., Ganjliazadeh, S.: Day-to-day dynamic network disequilibrium and idealized traveler information systems. Oper. Res. 42, 1120–1136 (1994) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Friesz, T.L., Bernstein, D.H., Stough, R.: Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows. Trans. Sci. 30, 14–31 (1996) MATHCrossRefGoogle Scholar
  8. 8.
    Giannessi, F., Maugeri, A.: Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995) MATHGoogle Scholar
  9. 9.
    Giannessi, F., Maugeri, A., Pardalos, P.M.: Equilibrium Problems, Nonsmooth Optimization and Variational Inequalities Problems. Kluwer Academic, Dordrecht (2001) Google Scholar
  10. 10.
    Glowinski, R., Lions, J.L., Tremolieres, R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981) MATHGoogle Scholar
  11. 11.
    Hu, X., Wang, J.: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network. IEEE Trans. Neural Netw. 17, 1487–1499 (2006) CrossRefGoogle Scholar
  12. 12.
    Mosco, U.: Implicit variational methods and quasi variational inequalities. In: Nonlinear Operators and the Calculus of Variations. Lecture Notes in Mathematics, vol. 543, pp. 83–126. Springer, Berlin (1976) CrossRefGoogle Scholar
  13. 13.
    Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. Kluwer Academic, Dordrecht (1995) MATHGoogle Scholar
  14. 14.
    Aslam Noor, M.: On variational inequalities. PhD Thesis, Brunel University, London, UK (1975) Google Scholar
  15. 15.
    Aslam Noor, M.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Aslam Noor, M.: Wiener-Hopf equations and variational inequalities. J. Optim. Theory Appl. 79, 197–206 (1993) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Aslam Noor, M.: Some recent advances in variational inequalities, Part I. Basic concepts. New Zealand J. Math. 26, 53–80 (1997) MATHMathSciNetGoogle Scholar
  18. 18.
    Aslam Noor, M.: Some recent advances in variational inequalities, Part II. Other concepts. New Zealand J. Math. 26, 229–255 (1997) MATHMathSciNetGoogle Scholar
  19. 19.
    Aslam Noor, M.: Some algorithms for general monotone mixed variational inequalities. Math. Comput. Model. 29, 1–9 (1999) Google Scholar
  20. 20.
    Aslam Noor, M.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Aslam Noor, M.: Resolvent dynamical systems for mixed variational inequalities. Korean J. Comput. Appl. Math. 9, 15–26 (2002) MATHMathSciNetGoogle Scholar
  22. 22.
    Aslam Noor, M.: A Wiener-Hopf dynamical system for variational inequalities. New Zealand J. Math. 31, 173–182 (2002) MATHMathSciNetGoogle Scholar
  23. 23.
    Aslam Noor, M.: New extragradient-type methods for general variational inequalities. J. Math. Anal. Appl. 277, 379–395 (2003) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Aslam Noor, M.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004) MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Aslam Noor, M.: Mixed quasi variational inequalities. Appl. Math. Comput. 146, 553–578 (2003) MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Aslam Noor, M.: Fundamentals of mixed quasi variational inequalities. Int. J. Pure Appl. Math. 15, 137–258 (2004) MATHMathSciNetGoogle Scholar
  27. 27.
    Aslam Noor, M.: Fundamentals of equilibrium problems. Math. Inequal. Appl. 9, 529–566 (2006) MATHMathSciNetGoogle Scholar
  28. 28.
    Aslam Noor, M.: Merit functions for general variational inequalities. J. Math. Anal. Appl. 316, 736–752 (2006) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Aslam Noor, M.: Projection-proximal methods for general variational inequalities. J. Math. Anal. Appl. 318, 53–62 (2006) MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Aslam Noor, M.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008) MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Aslam Noor, M.: Variational inequalities and applications. Lecture Notes, Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan (2007) Google Scholar
  32. 32.
    Aslam Noor, M.: Mixed variational inequalities and nonexpansive mappings. In: Th.M. Rassias (ed.) Inequalities and Applications (2008) Google Scholar
  33. 33.
    Aslam Noor, M., Bnouhachem, A.: Self-adaptive methods for mixed quasi variational inequalities. J. Math. Anal. Appl. 312, 514–526 (2005) MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Aslam Noor, M., Inayat Noor, K.: Self-adaptive projection algorithms for general variational inequalities. Appl. Math. Comput. 151, 659–670 (2004) MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Aslam Noor, M., Inayat Noor, K., Rassias, Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993) MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Aslam Noor, M., Inayat Noor, K., Rassias, T.M.: Set-valued resolvent equations and mixed variational inequalities. J. Math. Anal. Appl. 220, 741–759 (1998) MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Aslam Noor, M., Huang, Z.: Three-step methods for nonexpansive mappings and variational inequalities. Appl. Math. Comput. 187, 680–685 (2007) MATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Patriksson, M.: Nonlinear Programming and Variational Inequalities: A Unified Approach. Kluwer Academic, Dordrecht (1998) Google Scholar
  39. 39.
    Pitonyak, A., Shi, P., Shillor, M.: On an iterative method for variational inequalities. Numer. Math. 58, 231–244 (1990) MATHCrossRefMathSciNetGoogle Scholar
  40. 40.
    Shi, P.: Equivalence of variational inequalities with Wiener-Hopf equations. Proc. Am. Math. Soc. 111, 339–346 (1991) MATHCrossRefGoogle Scholar
  41. 41.
    Stampacchia, G.: Formes bilineaires coercivities sur les ensembles coercivities sur les ensembles convexes. C.R. Acad. Sci. Paris 258, 4413–4416 (1964) MATHMathSciNetGoogle Scholar
  42. 42.
    Xia, Y.S.: Further results on global convergence and stability of globally projected dynamical systems. J. Optim. Theory Appl. 122, 627–649 (2004) MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Xia, Y.S.: On convergence conditions of an extended projection neural network. Neural Comput. 17, 515–525 (2005) MATHCrossRefGoogle Scholar
  44. 44.
    Xia, Y.S., Wang, J.: A recurrent neural network for solving linear projection equations. Neural Network 13, 337–350 (2000) CrossRefGoogle Scholar
  45. 45.
    Xia, Y.S., Wang, J.: On the stability of globally projected dynamical systems. J. Optim. Theory Appl. 106, 129–150 (2000) MATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Zhang, D., Nagurney, A.: On the stability of the projected dynamical systems. J. Optim. Theory Appl. 85, 97–124 (1995) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Muhammad Aslam Noor
    • 1
  • Khalida Inayat Noor
    • 1
  • Huma Yaqoob
    • 1
  1. 1.Mathematics DepartmentCOMSATS Institute of Information TechnologyIslamabadPakistan

Personalised recommendations