Advertisement

Acta Applicandae Mathematicae

, Volume 109, Issue 3, pp 1065–1075 | Cite as

Gap Solitons in Periodic Discrete Schrödinger Equations with Nonlinearity

  • Haiping Shi
Article

Abstract

By using the critical point theory, the existence of gap solitons for periodic discrete nonlinear Schrödinger equations is obtained. An open problem proposed by Professor Alexander Pankov is solved.

Keywords

Soliton solutions Discrete nonlinear Schrödinger equation Variational structure Critical point theory 

Mathematics Subject Classification (2000)

35Q51 35Q55 39A70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations, and Inverse Scattering. CUP, Cambridge (1991) zbMATHGoogle Scholar
  2. 2.
    Aceves, A.B.: Optical gap solutions: past, present, and future; theory and experiments. Chaos 10, 584–589 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ackermann, N.: On a periodic Schrödinger equation with nonlocal superlinear part. Math. Z. 248, 423–443 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Physica D 103, 201–250 (1997) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bartsh, T., Ding, Y.H.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Bronski, J.C., Segev, M., Weinstein, M.I.: Mathematical frontiers in optical solitons. Proc. Natl. Acad. Sci. USA 98, 12872–12873 (2001) CrossRefMathSciNetGoogle Scholar
  8. 8.
    de Sterke, C.M., Sipe, J.E.: Gap solitons. Prog. Opt. 33, 203–260 (1994) CrossRefGoogle Scholar
  9. 9.
    Ding, Y.H., Luan, S.X.: Multiple solutions for a class of nonlinear Schrödinger equations. J. Differ. Equ. 207, 423–457 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Flash, S., Willis, C.R.: Discrete breathers. Phys. Rep. 295, 181–264 (1998) CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gorbach, A., Jonasson, M.: Gap and out-gap breathers in a binary modulated discrete nonlinear Schrödinger model. Eur. Phys. J. D 29, 77–93 (2004) CrossRefGoogle Scholar
  12. 12.
    Henning, D., Tsironis, G.P.: Wave transmission in nonlinear lattices. Phys. Rep. 307, 333–432 (1999) CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kevreides, P.G., Rasmussen, K., Bishop, A.R.: The discrete nonlinear Schrödinger equation: a survey of recent results. Int. J. Mod. Phys. B 15, 2883–2900 (2001) Google Scholar
  14. 14.
    Kivshar, Y.S., Agrawal, G.P.: Optical Solitons: From Fibers to Photonic Crystals. Academic Press, San Diego (2003) Google Scholar
  15. 15.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon, New York (1979) Google Scholar
  16. 16.
    Machay, R.S., Aubry, S.: Proof of existence of breathers for time reversible or Hamiltonian networks of weakly coupled oscillators. Nonlinearity 7, 16–23 (1994) Google Scholar
  17. 17.
    Malomed, B.A., Kevrekidis, P.G., Frantzeskakis, D.J., Nistazakis, H.E., Yannacopoulos, A.N.: One and two dimensional solitons in second-harmonic-generating lattices. Phys. Rev. E 65, 056606.1–056606.12 (2002) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Mills, D.L.: Nonlinear Optics. Springer, Berlin (1998) zbMATHGoogle Scholar
  19. 19.
    Pankov, A.: Gap solitons in periodic discrete nonlinear Schrödinger equations. Nonlinearity 19, 27–40 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. AMS, Providence (1986) Google Scholar
  21. 21.
    Sukhorukov, A.A., Kivshar, Y.S.: Generation and stability of discrete gap solitons. Opt. Lett. 28, 2345–2348 (2003) CrossRefGoogle Scholar
  22. 22.
    Teschl, G.: Jacobi Operators and Completely Integrable Nonlinear Lattices. AMS, Providence (2000) zbMATHGoogle Scholar
  23. 23.
    Wang, M.L., Zhou, Y.B.: The periodic wave solutions for the Klein-Gordor-Schrödinger equations. Phys. Lett. A. 318, 84–92 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Weintein, M.: Excitation thresholds for nonlinear localized modes on lattices. Nonlinearity 12, 673–691 (1999) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Willem, M., Zou, W.: On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52, 109–132 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Wu, X.F.: Solitary wave and periodic wave solutions for the quintic discrete nonlinear Schrödinger equation. Chaos Solitons Fractals (2008, in press) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Basic Courses DepartmentGuangdong Baiyun InstituteGuangzhouPeople’s Republic of China

Personalised recommendations