Acta Applicandae Mathematicae

, Volume 109, Issue 2, pp 507–525 | Cite as

Energy Decay for the Strongly Damped Nonlinear Beam Equation and Its Applications in Moving Boundary

Article

Abstract

We study the existence and energy decay of solutions for the strongly damped nonlinear beam equation. We apply a method based on Nakao method to show that the solution decays exponentially, and to obtain precise estimates of the constants in the estimates. Finally, we discuss its applications in moving boundary.

Keywords

Nonlinear beam equation Moving boundary Nakao method Galerkin method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.: Inequalities. Springer, Berlin (1971) MATHGoogle Scholar
  2. 2.
    Benabidallah, R., Ferreira, J.: Asymptotic behaviour for the nonlinear beam equation in noncylindrical domain. Commun. Appl. Anal. 6, 219–234 (2002) MATHMathSciNetGoogle Scholar
  3. 3.
    Burgreen, D.: Free vibrations of a pinended column with constant distance between pinends. J. Appl. Mech. 18, 135–139 (1951) Google Scholar
  4. 4.
    Eisley, J.G.: Nonlinear vibrations of beams and rectangular plates. Z. Angew. Math. Phys. 15, 167–193 (1964) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ferreira, J., Santos, M.L.: Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Commun. Pure Appl. Anal. 2(4), 511–520 (2003) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ferreira, J., Benabidallah, R., Munoz Rivera, J.E.: Asymptotic behaviour for the nonlinear beam equation in a time-dependent domain. Rend. Math. 19(VII), 177–193 (1999) MATHMathSciNetGoogle Scholar
  7. 7.
    Ferreira, J., Santos, M.L., Matos, M.P.: Stability for the beam equation with memory in noncylindrical domains. Math. Methods Appl. Sci. 27, 1493–1506 (2004) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lasiecka, I.: Exponential decay rates for the solutions of Euler-Bernoulli equations with boundary dissipation occurring in the moments only. J. Differ. Equ. 95(1), 169–182 (1992) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969) MATHGoogle Scholar
  10. 10.
    Medeiros, L.A.: On a new class of nonlinear wave equation. J. Math. Anal. Appl. 69, 252–262 (1979) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Nakao, M.: Decay of solutions of some nonlinear evolution equations. J. Math. Anal. Appl. 60, 542–549 (1977) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Nishihara, K.: Exponentially decay of solutions of some quasilinear hyperbolic equations with linear damping. Nonlinear Anal.: Theory Methods Appl. 8, 623–636 (1984) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Park, J.Y., Kim, J.A.: Global existence and stability for Euler-Bernoulli beam equation with memory condition at the boundary. J. Korean Math. Soc. 42(6), 1137–1151 (2005) MATHMathSciNetGoogle Scholar
  14. 14.
    Patcheu, S.K.: On a global solution and asymptotic behaviour for the generalized damped extensible beam equation. J. Differ. Equ. 135, 299–314 (1997) MATHCrossRefGoogle Scholar
  15. 15.
    Pereira, D.C.: Existence, uniqueness and asymptotic behaviour for solutions of the nonlinear beam equation. Nonlinear Anal.: Theory Methods Appl. 14, 613–623 (1990) MATHCrossRefGoogle Scholar
  16. 16.
    Rasso, R.D., Ughi, M.: Problèmes de Dirichlet pour une classe d’équations paraboliques non linéaires degenerees dans des ouverts non cylindriques. C. R. Seances Acad. Sci. Paris 308, 555–558 (1989) Google Scholar
  17. 17.
    Santos, M.L., Ferreira, J., Raposo, C.A.: Existence and uniform decay for a nonlinear beam equation with nonlinearity of Kirchhoff type in domains with moving boundary. Abstr. Appl. Anal. 8, 901–919 (2005) CrossRefMathSciNetGoogle Scholar
  18. 18.
    Woinowsky-Krieger, S.: The effect of axial force on the vibration of hinged bars. J. Appl. Mech. 17, 35–36 (1950) MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of MathematicsChungnam National UniversityDaejeonKorea

Personalised recommendations