Acta Applicandae Mathematicae

, Volume 109, Issue 2, pp 315–359 | Cite as

Admissible Transformations and Normalized Classes of Nonlinear Schrödinger Equations

  • Roman O. Popovych
  • Michael Kunzinger
  • Homayoon Eshraghi


The theory of group classification of differential equations is analyzed, substantially extended and enhanced based on the new notions of conditional equivalence group and normalized class of differential equations. Effective new techniques are proposed. Using these, we exhaustively describe admissible point transformations in classes of nonlinear (1+1)-dimensional Schrödinger equations, in particular, in the class of nonlinear (1+1)-dimensional Schrödinger equations with modular nonlinearities and potentials and some subclasses thereof. We then carry out a complete group classification in this class, representing it as a union of disjoint normalized subclasses and applying a combination of algebraic and compatibility methods. Moreover, we introduce the complete classification of (1+2)-dimensional cubic Schrödinger equations with potentials. The proposed approach can be applied to studying symmetry properties of a wide range of differential equations.


Group classification of differential equations Group analysis of differential equations Equivalence group Admissible transformations Normalized classes of differential equations Lie symmetry Nonlinear Schrödinger equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramenko, A.A., Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations. II. Invariance under solvable local transformation groups. Differ. Equ. 38, 502–509 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Akhatov, I.Sh., Gazizov, R.K., Ibragimov, N.Kh.: Nonlocal symmetries. A heuristic approach. Itogi Nauki Teh. 34, 3–83 (1989) (in Russian, translated in J. Sov. Math. 55, 1401–1450 (1991)) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Anderson, I.M., Fels, M.E., Torre, C.G.: Group invariant solutions without transversality. Commun. Math. Phys. 212, 653–686 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Basarab-Horwath, P., Lahno, V., Zhdanov, R.: The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 69, 43–94 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Baumann, G., Nonnenmacher, T.F.: Lie transformations, similarity reduction, and solutions for the nonlinear Madelung fluid equations with external potential. J. Math. Phys. 28, 1250–1260 (1987) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Białynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 23, 461–466 (1975) Google Scholar
  7. 7.
    Białynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100, 62–93 (1976) CrossRefGoogle Scholar
  8. 8.
    Białynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20, 539–544 (1978) CrossRefGoogle Scholar
  9. 9.
    Białynicki-Birula, I., Sowiński, T.: Solutions of the logarithmic Schrödinger equation in a rotating harmonic trap. Nonlinear waves: classical and quantum aspects. NATO Sci. Ser. II Math. Phys. Chem., vol. 153, pp. 99–106. Kluwer Academic, Dordrecht (2004). arXiv:quant-ph/0310195 Google Scholar
  10. 10.
    Bluman, G.W., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989) zbMATHGoogle Scholar
  11. 11.
    Borovskikh, A.V.: Group classification of the eikonal equations for a three-dimensional nonhomogeneous medium. Mat. Sb. 195(4), 23–64 (2004) (in Russian); translation in Sb. Math. 195(3–4), 479–520 (2004) MathSciNetGoogle Scholar
  12. 12.
    Borovskikh, A.V.: The two-dimensional eikonal equation. Sib. Mat. Zh. 47, 993–1018 (2006) zbMATHMathSciNetGoogle Scholar
  13. 13.
    Boyer, C.P., Sharp, R.T., Winternitz, P.: Symmetry breaking interactions for the time dependent Schrödinger equation. J. Math. Phys. 17, 1439–1451 (1976) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Broadbridge, P., Godfrey, S.E.: Integrable heterogeneous nonlinear Schrödinger equations with dielectric loss: Lie–Bäcklund symmetries. J. Math. Phys. 32, 8–18 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Carles, R.: Critical nonlinear Schrödinger equations with and without harmonic potential. Math. Models Methods Appl. Sci. 12, 1513–1523 (2002). arXiv:cond-mat/0112414 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Clarkson, P.A.: Dimensional reductions and exact solutions of a generalized nonlinear Schrödinger equation. Nonlinearity 5, 453–472 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations. J. Phys. A 27, 1771–1780 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Doebner, H.-D., Goldin, G.A., Nattermann, P.: Gauge transformations in quantum mechanics and the unification of nonlinear Schrödinger equations. J. Math. Phys. 40, 49–63 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fushchych, W.I.: Conditional symmetry of equations of nonlinear mathematical physics. Ukr. Mat. Zh. 43, 1456–1470 (1991) (in Russian); translation in Ukr. Math. J. 43, 1350–1364 (1991) Google Scholar
  20. 20.
    Fushchych, W.I., Cherniha, R.M.: Galilei-invariant nonlinear systems of evolution equations. J. Phys. A 28, 5569–5579 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fushchich, W.I., Chopik, V.I.: Conditional invariance of a nonlinear Schrödinger equation. Dokl. Akad. Nauk Ukr. SSR Ser. A 4, 30–33 (1990) (in Russian) MathSciNetGoogle Scholar
  22. 22.
    Fushchich, W.I., Chopyk, V.I.: Symmetry and non-Lie reduction of the nonlinear Schrödinger equation. Ukr. Mat. Zh. 45, 539–551 (1993) (in Ukrainian); translation in Ukr. Math. J. 45, 581–597 (1993) Google Scholar
  23. 23.
    Fushchych, W., Chopyk, V., Nattermann, P., Scherer, W.: Symmetries and reductions of nonlinear Schrödinger equations of Doebner–Goldin type. Rep. Math. Phys. 35, 129–138 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Fushchych, W.I., Moskaliuk, S.S.: On some exact solutions of the nonlinear Schrödinger equations in three spatial dimensions. Lett. Nuovo Cimento 31, 571–576 (1981) CrossRefMathSciNetGoogle Scholar
  25. 25.
    Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, I: the symmetry group and its subgroups. J. Phys. A 21, 1493–1511 (1988) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, II: exact solutions. J. Phys. A 22, 469–497 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Gagnon, L., Winternitz, P.: Lie symmetries of a generalised non-linear Schrödinger equation, III: reductions to third-order ordinary differential equations. J. Phys. A 22, 499–509 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gagnon, L., Winternitz, P.: Exact solutions of the cubic and quintic non-linear Schrödinger equation for a cylindrical geometry. Phys. Rev. A 39, 296–306 (1989) CrossRefMathSciNetGoogle Scholar
  29. 29.
    Gagnon, L., Winternitz, P.: Symmetry classes of variable coefficient nonlinear Schrödinger equations. J. Phys. A 26, 7061–7076 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ibragimov, N.H. (ed.): Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, vols. 1, 2. CRC Press, Boca Raton (1994) Google Scholar
  31. 31.
    Ibragimov, N.H., Torrisi, M., Valenti, A.: Preliminary group classification of equations v tt=f(x,v x)v xx+g(x,v x). J. Math. Phys. 32, 2988–2995 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ivanova, N.: Symmetry of nonlinear Schrödinger equations with harmonic oscillator type potential. Proc. Inst. Math. NAS Ukr. Part 1 43, 149–150 (2002) MathSciNetGoogle Scholar
  33. 33.
    Ivanova, N.M., Popovych, R.O., Eshraghi, H.: On symmetry properties of nonlinear Schrödinger equations. Sveske Fiz. Nauka 18(A1), 451–456 (2005) Google Scholar
  34. 34.
    Ivanova, N.M., Popovych, R.O., Sophocleous, C.: Conservation laws of variable coefficient diffusion–convection equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 107–113 (2004) Google Scholar
  35. 35.
    Kavian, O., Weissler, F.B.: Self-similar solutions of the pseudo-conformally invariant nonlinear Schrödinger equation. Mich. Math. J. 41, 151–173 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Kingston, J.G., Sophocleous, C.: On point transformations of a generalised Burgers equation. Phys. Lett. A 155, 15–19 (1991) CrossRefMathSciNetGoogle Scholar
  37. 37.
    Kingston, J.G., Sophocleous, C.: On form-preserving point transformations of partial differential equations. J. Phys. A 31, 1597–1619 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Kingston, J.G., Sophocleous, C.: Symmetries and form-preserving transformations of one-dimensional wave equations with dissipation. Int. J. Non-Linear Mech. 36, 987–997 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Kunzinger, M., Popovych, R.: Normalized classes of multi-dimensional nonlinear Schrödinger equations (in preparation) Google Scholar
  40. 40.
    Lagno, V.I., Samoilenko, A.M.: Group classification of nonlinear evolution equations, I: invariance under semisimple local transformation groups. Differ. Equ. 38, 384–391 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Lahno, V.I., Spichak, S.V.: Group classification of quasi-linear elliptic type equations, I: invariance under Lie algebras with nontrivial Levi decomposition. Ukr. Math. J. 59, 1532–1545 (2007) CrossRefGoogle Scholar
  42. 42.
    Lahno, V., Zhdanov, R.: Group classification of the general second-order evolution equation: semi-simple invariance groups. J. Phys. A 40, 5083–5103 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Lahno, V., Zhdanov, R., Magda, O.: Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 91, 253–313 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Lie, S.: Über die Integration durch bestimmte Integrale von einer Klasse linear partieller Differentialgleichung. Arch. Math. 6(3), 328–368 (1881). Translation by N.H. Ibragimov: S. Lie, On integration of a class of linear partial differential equations by means of definite integrals. In: CRC Handbook of Lie Group Analysis of Differential Equations, vol. 2, pp. 473–508 (1994) Google Scholar
  45. 45.
    Lie, S.: Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Teubner, Leipzig (1891) zbMATHGoogle Scholar
  46. 46.
    Lisle, I.G.: Equivalence transformations for classes of differential equations. PhD thesis, University of British Columbia (1992) Google Scholar
  47. 47.
    Meleshko, S.V.: Group classification of equations of two-dimensional gas motions. Prikl. Mat. Mekh. 58, 56–62 (1994) (in Russian): translation in J. Appl. Math. Mech. 58, 629–635 (1994) MathSciNetGoogle Scholar
  48. 48.
    Miller, W.: Symmetry and Separation of Variables. Addison-Wesley, Reading (1977) zbMATHGoogle Scholar
  49. 49.
    Nattermann, P., Doebner, H.-D.: Gauge classification. Lie symmetries and integrability of a family of nonlinear Schrödinger equations. J. Nonlinear Math. Phys. 3(3–4), 302–310 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Niederer, U.: The maximal kinematical invariance group of the free Schrödinger equation. Helv. Phys. Acta 45, 802–810 (1972) MathSciNetGoogle Scholar
  51. 51.
    Niederer, U.: The maximal kinematical invariance group of the harmonic oscillator. Helv. Phys. Acta 46, 191–200 (1973) Google Scholar
  52. 52.
    Nikitin, A.G., Popovych, R.O.: Group classification of nonlinear Schrödinger equations. Ukr. Mat. Zh. 53, 1053–1060 (2001) (in Ukrainian); translation in Ukr. Math. J. 53, 1255–1265 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  53. 53.
    Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986) zbMATHGoogle Scholar
  54. 54.
    Ovsiannikov, L.V.: Group Analysis of Differential Equations. Academic Press, New York (1982) zbMATHGoogle Scholar
  55. 55.
    Polyanin, A.D., Zaitsev, V.F.: Handbook of Nonlinear Partial Differential Equations. Chapman & Hall/CRC, Boca Raton (2004) zbMATHGoogle Scholar
  56. 56.
    Popovych, R.O.: Normalized classes of nonlinear Schrödinger equations. Bulg. J. Phys. 33(s2), 211–222 (2006) zbMATHGoogle Scholar
  57. 57.
    Popovych, R.O.: Equivalence of Q-conditional symmetries under group of local transformation. In: Proceedings of the Third International Conference “Symmetry in Nonlinear Mathematical Physics”. Proceedings of Institute of Mathematics (Kyiv), vol. 30, part 1, pp. 184–189 (2000). arXiv:math-ph/0208005
  58. 58.
    Popovych, R.O.: Classification of admissible transformations of differential equations. In: Collection of Works of Institute of Mathematics (Kyiv), vol. 2, no. 2, pp. 239–254 (2006) Google Scholar
  59. 59.
    Popovych, R.O., Eshraghi, H.: Admissible point transformations of nonlinear Schrödinger equations. In: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, pp. 167–174 (2004) Google Scholar
  60. 60.
    Popovych, R.O., Ivanova, N.M.: New results on group classification of nonlinear diffusion–convection equations. J. Phys. A 37, 7547–7565 (2004). arXiv:math-ph/0306035 zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Popovych, R.O., Ivanova, N.M.: Hierarchy of conservation laws of diffusion–convection equations. J. Math. Phys. 46, 043502 (2005). arXiv:math-ph/0407008 CrossRefMathSciNetGoogle Scholar
  62. 62.
    Popovych, R.O., Ivanova, N.M.: Potential equivalence transformations for nonlinear diffusion–convection equations. J. Phys. A 38, 3145–3155 (2005), arXiv:math-ph/0402066 zbMATHCrossRefMathSciNetGoogle Scholar
  63. 63.
    Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Lie symmetries of (1+1)-dimensional cubic Schrödinger equation with potential. In: Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 50, part 1, pp. 219–224 (2004). math-ph/0310039
  64. 64.
    Popovych, R.O., Ivanova, N.M., Eshraghi, H.: Group classification of (1+1)-dimensional Schrödinger equations with potentials and power nonlinearities. J. Math. Phys. 45, 3049–3057 (2004). arXiv:math-ph/0311039 zbMATHCrossRefMathSciNetGoogle Scholar
  65. 65.
    Popovych, R.O., Kunzinger, M., Ivanova, N.M.: Conservation laws and potential symmetries of linear parabolic equations. Acta Appl. Math. 100, 113–185 (2008). arXiv:0706.0443 zbMATHCrossRefMathSciNetGoogle Scholar
  66. 66.
    Popovych, R.O., Vaneeva, O.O., Ivanova, N.M.: Potential nonclassical symmetries and solutions of fast diffusion equation. Phys. Lett. A 362, 166–173 (2007). arXiv:math-ph/0506067 CrossRefMathSciNetGoogle Scholar
  67. 67.
    Prokhorova, M.: The structure of the category of parabolic equations. arXiv:math.AP/0512094 (2005)
  68. 68.
    Sakhnovich, A.: Exact solutions of nonlinear equations and the method of operator identities. Linear Algebra Appl. 182, 109–126 (1993) zbMATHCrossRefMathSciNetGoogle Scholar
  69. 69.
    Sakhnovich, A.: On a new integrable nonlinear Schrödinger equation with a simple external potential and its explicit solutions. arXiv:nlin.SI/0610046
  70. 70.
    Sakhnovich, A.: Nonisospectral integrable nonlinear equations with external potentials and their GBDT solutions. J. Phys. A: Math. Theor. 41, 155204 (2008). arXiv:0710.2260 CrossRefMathSciNetGoogle Scholar
  71. 71.
    Sciarrino, A., Winternitz, P.: Symmetries and solutions of the vector nonlinear Schrödinger equation. Nuovo Cimento Soc. Ital. Fis. B (12) 112, 853–871 (1997) MathSciNetGoogle Scholar
  72. 72.
    Stoimenov, S., Henkel, M.: Dynamical symmetries of semi-linear Schrödinger and diffusion equations. Nuclear Phys. B 723(3), 205–233 (2005). arXiv:math-ph/0504028 zbMATHCrossRefMathSciNetGoogle Scholar
  73. 73.
    Vaneeva, O.O., Johnpillai, A.G., Popovych, R.O., Sophocleous, C.: Enhanced group analysis and conservation laws of variable coefficient reaction-diffusion equations with power nonlinearities. J. Math. Anal. Appl. 330, 1363–1386 (2007). arXiv:math-ph/0605081 zbMATHCrossRefMathSciNetGoogle Scholar
  74. 74.
    Vaneeva, O.O., Popovych, R.O., Sophocleous, C.: Enhanced group analysis of variable coefficient semilinear diffusion equations with a power source. Acta Appl. Math. (to appear). arXiv:0708.3457
  75. 75.
    Wittkopf, A.D.: Algorithms and implementations for differential elimination. PhD thesis, Simon Fraser University (2004) Google Scholar
  76. 76.
    Wittkopf, A.D., Reid, G.J.: Fast differential elimination algorithms. Technical Report TR-00-06, Ontario Research Centre for Computer Algebra (2000) Google Scholar
  77. 77.
    Wittkopf, A.D., Reid, G.J.: Fast differential elimination in C: the CDiffElim environment. Comput. Phys. Commun. 139, 192–217 (2001) zbMATHCrossRefGoogle Scholar
  78. 78.
    Zhdanov, R.Z., Lahno, V.I.: Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 32, 7405–7418 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  79. 79.
    Zhdanov, R., Roman, O.: On preliminary symmetry classification of nonlinear Schrödinger equation with some applications of Doebner–Goldin models. Rep. Math. Phys. 45(2), 273–291 (2000) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Roman O. Popovych
    • 1
    • 2
  • Michael Kunzinger
    • 1
  • Homayoon Eshraghi
    • 3
    • 4
  1. 1.Fakultät für MathematikUniversität WienWienAustria
  2. 2.Institute of Mathematics of NAS of UkraineKyivUkraine
  3. 3.Physics DepartmentIran University of Science and Technology (IUST)TehranIran
  4. 4.Institute for Studies in Theoretical Physics and Mathematics (IPM)TehranIran

Personalised recommendations