Acta Applicandae Mathematicae

, Volume 106, Issue 3, pp 369–420 | Cite as

Generalizing the Reciprocal Logarithm Numbers by Adapting the Partition Method for a Power Series Expansion

  • Victor KowalenkoEmail author


Recently, a novel method based on the coding of partitions was used to determine a power series expansion for the reciprocal of the logarithmic function, viz. z/ln (1+z). Here we explain how this method can be adapted to obtain power series expansions for other intractable functions. First, the method is adapted to evaluate the Bernoulli numbers and polynomials. As a result, new integral representations and properties are determined for the former. Then via another adaptation of the method we derive a power series expansion for the function z s /ln  s (1+z), whose polynomial coefficients A k (s) are referred to as the generalized reciprocal logarithm numbers because they reduce to the reciprocal logarithm numbers when s=1. In addition to presenting a general formula for their evaluation, this paper presents various properties of the generalized reciprocal logarithm numbers including general formulas for specific values of s, a recursion relation and a finite sum identity. Other representations in terms of special polynomials are also derived for the A k (s), which yield general formulas for the highest order coefficients. The paper concludes by deriving new results involving infinite series of the A k (s) for the Riemann zeta and gamma functions and other mathematical quantities.


Absolute convergence Bernoulli numbers Bernoulli polynomials Conditional convergence Divergent series Equivalence Gamma function Generalized reciprocal logarithm number Harmonic number Partition Partition method for a power series expansion Pochhammer polynomials Polynomials Recursion relation Regularization Riemann zeta function Stirling numbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kowalenko, V.: Properties and applications of the reciprocal logarithm numbers (submitted for publication) Google Scholar
  2. 2.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C, 2nd edn. Cambridge University Press, New York (1992) zbMATHGoogle Scholar
  3. 3.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 5th edn. Academic, London (1994). Alan Jeffrey (Ed.) zbMATHGoogle Scholar
  4. 4.
    Kowalenko, V.: Towards a theory of divergent series and its importance to asymptotics. In: Recent Research Developments in Physics, vol. 2, pp. 17–68 (Transworld Research Network, Trivandrum, India, 2001) Google Scholar
  5. 5.
    Kowalenko, V.: The Stokes Phenomenon, Borel Summation and Mellin-Barnes Regularisation. Bentham e-books (submitted for publication) Google Scholar
  6. 6.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1973), p. 252 Google Scholar
  7. 7.
    Lighthill, M.J.: Fourier Analysis and Generalised Functions, Student’s edn. Cambridge University Press, Cambridge (1975) Google Scholar
  8. 8.
    Gel’fand, I.M., Shilov, G.E.: Generalized Functions, vol. 1—Properties and Operations. Academic, New York (1964) Google Scholar
  9. 9.
    Kowalenko, V.: Exactification of the asymptotics for Bessel and Hankel functions. Appl. Math. Comput. 133, 487–518 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kowalenko, V., Frankel, N.E., Glasser, M.L., Taucher, T.: Generalised Euler-Jacobi Inversion Formula and Asymptotics beyond All Orders. London Mathematical Society Lecture Note, vol. 214. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  11. 11.
    Kowalenko, V., Frankel, N.E.: Asymptotics for the Kummer function of Bose plasmas. J. Math. Phys. 35, 6179–6198 (1994) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kowalenko, V.: The non-relativistic charged Bose gas in a magnetic field II. Quantum properties. Ann. Phys. (N.Y.) 274, 165–250 (1999) zbMATHCrossRefGoogle Scholar
  13. 13.
    Dingle, R.B.: Asymptotic Expansions: Their Derivation and Interpretation. Academic, London (1973) zbMATHGoogle Scholar
  14. 14.
    Prudnikov, A.P., Marichev, O.I., Brychkov, Y.A.: Integrals and Series, vol. I: Elementary Functions. Gordon and Breach, New York (1986) Google Scholar
  15. 15.
    Munkhammar, J.: Integrating Factor. In: MathWorld-A Wolfram Web Resource.
  16. 16.
    Weisstein, E.W.: Bell Number. In: Mathworld—A Wolfram Web Resource.
  17. 17.
    Roman, S.: The Umbral Calculus. Academic, New York (1984) zbMATHGoogle Scholar
  18. 18.
    Weisstein, E.W.: Bernoulli Number. In: Mathworld—A Wolfram Web Resource.
  19. 19.
    Sondow, J., Weisstein, E.W.: Harmonic number. In: MathWorld—A Wolfram Web Resource.
  20. 20.
    Wolfram, S.: Mathematica—A System for Doing Mathematics by Computer. Addison-Wesley, Reading (1992) Google Scholar
  21. 21.
    Wu, M., Pan, H.: Sums of products of Bernoulli numbers of the second kind, arXiv:0709.2947v1 [math.NT], 19 Sep. 2007
  22. 22.
    Weisstein, E.W.: Bernoulli number of the second kind. In: Mathworld—A Wolfram Web Resource.
  23. 23.
    Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987) zbMATHGoogle Scholar
  24. 24.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965) Google Scholar
  25. 25.
    Prudnikov, A.P., Marichev, O.I., Brychkov, Y.A.: Integrals and Series, vol. 3: More Special Functions. Gordon and Breach, New York (1990) Google Scholar
  26. 26.
    Weisstein, E.W.: Stirling number of the first kind. In: MathWorld—A Wolfram Web Resource.

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of PhysicsUniversity of MelbourneParkvilleAustralia

Personalised recommendations