Acta Applicandae Mathematicae

, Volume 104, Issue 3, pp 243–256 | Cite as

Shape Optimization of a Nozzle with Specified Flow Field Including Viscosity Effect

  • B. FarhadiniaEmail author
  • M. H. Farahi
  • J. A. Esfahani


In this article we intend to find the optimal shape of a nozzle respecting to some given target flow fields including viscosity effect. Via an approach based on measure theory which is not an iterative method and need not to any initial guess, each shape optimization problems are solved and consequently each geometry of the nozzle corresponding to prescribed flow fields is determined. Analyzing several case studies make us to confident on the use of the presented approach, because the obtained results give entirely the same as what we expect physically.


Navier-Stokes equations Optimal shape design (OSD) Optimal control Measure theory Linear programming problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farahi, M.H., Rubio, J.E., Wilson, D.A.: The optimal control of the linear wave equation. Int. J. Control 63(1), 833–848 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Farhadinia, B., Farahi, M.H.: Optimal shape design of an almost straight Nozzle. Int. J. Appl. Math. 17(3), 319–333 (2005) zbMATHMathSciNetGoogle Scholar
  3. 3.
    Gunzburger, M., Kim, H.: Existence of an optimal solution of a shape control problem for the stationary Navier-Stokes equations. SIAM J. Control Optim. 36(3), 895–909 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gunzburger, M., Manservisi, S.: Flow matching by shape design for the Navier-Stokes system. Int. Ser. Numer. Math. 139, 279–289 (2001) MathSciNetGoogle Scholar
  5. 5.
    Kamyad, A., Rubio, J.E., Wilson, D.A.: Optimal control of the multidimensional diffusion equation. J. Optim. Theory Appl. 70, 191–209 (1991) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mehne, H.H., Farahi, M.H., Esfahani, J.A.: Slot nozzle design with specified pressure in a given subregion by embedding method. Appl. Math. Comput. 168, 1258–1272 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Rubio, J.E.: The global control of nonlinear diffusion equations. SIAM J. Control Optim. 33(1), 308–322 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Rubio, J.E.: Control and Optimization: The Linear Treatment of Nonlinear Problems. Manchester University Press, Manchester (1986) zbMATHGoogle Scholar
  9. 9.
    Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dept. Math.University of Mohaghegh ArdabiliArdabilIran
  2. 2.Ferdowsi University of MashhadMashhadIran

Personalised recommendations