Acta Applicandae Mathematicae

, Volume 102, Issue 2–3, pp 219–236 | Cite as

On the Minimum Average Distance Spanning Tree of the Hypercube

  • Maurice Tchuente
  • Paulin Melatagia Yonta
  • Jean-Michel NlongII
  • Yves Denneulin


Given an undirected and connected graph G, with a non-negative weight on each edge, the Minimum Average Distance (MAD) spanning tree problem is to find a spanning tree of G which minimizes the average distance between pairs of vertices. This network design problem is known to be NP-hard even when the edge-weights are equal. In this paper we make a step towards the proof of a conjecture stated by A.A. Dobrynin, R. Entringer and I. Gutman in 2001, and which says that the binomial tree B n is a MAD spanning tree of the hypercube H n . More precisely, we show that the binomial tree B n is a local optimum with respect to the 1-move heuristic which, starting from a spanning tree T of the hypercube H n , attempts to improve the average distance between pairs of vertices, by adding an edge e of H n -T and removing an edge e′ from the unique cycle created by e. We also present a greedy algorithm which produces good solutions for the MAD spanning tree problem on regular graphs such as the hypercube and the torus.


Minimum average distance Spanning tree Hypercube Binomial tree 1-move heuristic Local optimality Greedy algorithm Torus 

Mathematics Subject Classification (2000)

05C12 05C05 05C90 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anker, T., Breitgand, D., Dolev, D., Levy, Z.: Congress: Connection-oriented group-address resolution service. In: Proceedings of SPIE on Broadcast Networking Technologies (1997) Google Scholar
  2. 2.
    Ban, Y.A., Bereg, S., Mustafa, N.H.: A conjecture on Wiener indices in combinatorial chemistry. Algorithmica 40, 99–117 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Dankelmann, P.: A note on MAD spanning trees. J. Comb. Math. Comb. Comput. 32, 93–95 (2000) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Das, A., Gupta, I., Motivala, A.: Swim: Scalable weakly consistent infection-style process group membership protocol. In: Proceedings of the International Conference on Dependable Systems and Networks, pp. 303–312 (2002) Google Scholar
  5. 5.
    Dionne, R., Florian, M.: Exact and approximate algorithms for optimal network design. Networks 9, 37–59 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dobrynin, A.A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Entringer, R.C.: Distance in graphs: Trees. J. Comb. Math. Comb. Comput. 24, 65–84 (1997) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Entringer, R.C., Kleitman, D.J., Székely, L.A.: A note on spanning trees with minimum average distance. Bull. Inst. Comb. Appl. 17, 71–78 (1996) zbMATHGoogle Scholar
  9. 9.
    Fischetti, M., Lancia, G., Serafini, P.: Exact algorithms for minimum routing cost trees. Networks 39(3), 161–173 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ganesh, A.J., Kermarrec, A.M., Massoulié, L.: Peer-to-peer membership management for gossip-based protocols. IEEE Trans. Comput. 52(2), 139–149 (2003) CrossRefGoogle Scholar
  11. 11.
    Goldman, D., Istrail, S., Lancia, G., Piccolboni, A.: Algorithmic strategies in combinatorial chemistry. In: Proc. 11th ACM-SIAM Symposium on Discrete Algorithms, pp. 275–284 (2000) Google Scholar
  12. 12.
    Gusfield, D.: Efficient methods for multiple sequence alignment with guaranteed error bounds. Bull. Math. Biol. 55, 141–154 (1993) zbMATHGoogle Scholar
  13. 13.
    Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the network design problem. Networks 8, 279–285 (1978) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hoang, H.H.: A computational approach to the selection of an optimal network. Manag. Sci. 19(5), 488–498 (1973) zbMATHGoogle Scholar
  15. 15.
    Hu, T.C.: Optimum communication spanning trees. SIAM J. Comput. 3(3), 188–195 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lin, M.J., Marzullo, K., Massini, S.: Directional gossip: Gossip in a wide area network. Technical Report CS1999-0622, Univ. of California, San Diego, Computer Science and Eng. (1999) Google Scholar
  17. 17.
    McCanna, J.E.: Personal communication Google Scholar
  18. 18.
    Nlong II, J.M., Denneulin, Y.: Migration de processus linux sous i-cluster. In: 15èmes Rencontres Francophones en Parallélisme, pp. 614–623 (2003) Google Scholar
  19. 19.
    Ridley, T.M.: An investment policy to reduce the travel time in a transportation network. Transp. Res. 2(4), 409–424 (1968) CrossRefGoogle Scholar
  20. 20.
    Scott, A.J.: The optimal network problem: some computational procedures. Transp. Res. 3(2), 201–210 (1969) CrossRefGoogle Scholar
  21. 21.
    Stairs, S.: Selecting an optimal traffic network. J. Transp. Econ. Policy 2, 218–231 (1968) Google Scholar
  22. 22.
    Thibault, N., Laforest, C.: Algorithme incrémental pour le maintien d’un arbre de connexion. In: Rencontres Francophones en Parallélisme, pp. 27–34 (2003) Google Scholar
  23. 23.
    Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947) CrossRefGoogle Scholar
  24. 24.
    Wong, R.T.: Worst-case analysis of network design problem heuristics. SIAM J. Algebr. Discrete Methods 1(1), 51–63 (1980) zbMATHCrossRefGoogle Scholar
  25. 25.
    Wu, B.Y., Chao, K.M., Tang, C.Y.: Approximation algorithms for the shortest total path length spanning tree problem. Discrete Appl. Math. 105, 273–289 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Wu, B.Y., Lancia, G., Bafna, V., Chao, K.M., Ravi, R., Tang, C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29(3), 761–778 (1999) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Maurice Tchuente
    • 1
    • 2
    • 3
  • Paulin Melatagia Yonta
    • 1
  • Jean-Michel NlongII
    • 4
    • 5
  • Yves Denneulin
    • 5
  1. 1.Laboratoire MAT-IRD, Département d’Informatique, Faculté des SciencesUniversité de Yaoundé IYaoundéCameroun
  2. 2.Ecole Normale Supérieure de LyonInstitut des Systèmes ComplexesLyon Cedex 07France
  3. 3.Institut de Recherche pour le Développement (IRD)UR GEODESBondy CedexFrance
  4. 4.Département de Mathématique-Informatique, Faculté des SciencesUniversité de NgaoundéréNgaoundéréCameroun
  5. 5.Laboratoire Informatique et DistributionUMR CNRS, INPG, INRIA, UJF 5132Montbonnot Saint MartinFrance

Personalised recommendations