Acta Applicandae Mathematicae

, Volume 102, Issue 2–3, pp 147–178 | Cite as

Soliton Equations and Simple Combinatorics

  • Franklin Lambert
  • Johan Springael


A systematic, elementary and pedagogical approach to a class of soliton equations, and to their spectral formulation, is presented. This approach, based on the use of exponential polynomials, follows naturally from a comparison of some simple results for two representatives of the class: the KdV- and the Boussinesq-equation.


Soliton NLPDE Integrable systems Bäcklund transformation Lax pairs 

AMS Subject Classifications

35Q51 37K40 14H70 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: The inverse scattering transform—Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974) MathSciNetGoogle Scholar
  2. 2.
    Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–263 (1934) CrossRefGoogle Scholar
  3. 3.
    Bogdanov, L.V., Zakharov, V.E.: The Boussinesq equation revisited. Physica D 165, 137–162 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boussinesq, J.: Théorie de l’intumescence liquide appelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. C. R. Acad. Sci. Paris 72, 755–759 (1871) Google Scholar
  5. 5.
    Burgers, J.M.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948) MathSciNetGoogle Scholar
  6. 6.
    Chen, H.H.: Relation between Bäcklund transformations and inverse scattering problems. In: Miura, R. (ed.) Bäcklund Transformations, the Inverse Scattering Method, Solitons and Their Applications. Lecture Notes in Mathematics, vol. 515, pp. 241–252. Springer, Berlin (1976) CrossRefGoogle Scholar
  7. 7.
    Cole, J.D.: On a quasilinear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9, 225–236 (1951) zbMATHMathSciNetGoogle Scholar
  8. 8.
    de Bruno, F.: Notes sur une nouvelle formule de calcul différenciel. Q. J. Pure Appl. Math. 1, 359–360 (1857) Google Scholar
  9. 9.
    Fokas, A.S., Kaup, D.J., Newell, A.C., Zakharov, V.E. (eds.): Nonlinear processes in physics. In: Proceedings of the III Potsdam V Kiev Workshop, 1–11 August 1991, Clarkson University, Potsdam, NY. Springer, Berlin (1993) Google Scholar
  10. 10.
    Fordy, A.P.: Soliton Theory: A Survey of Results. Manchester University Press, Manchester (1990) Google Scholar
  11. 11.
    Fuchssteiner, B.: Application of hereditary symmetries to nonlinear evolution equations. Nonlinear Anal. 3, 849–862 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gardner, C.S., Green, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967) zbMATHCrossRefGoogle Scholar
  13. 13.
    Gibbon, J.D., Radmore, P., Tabor, M., Wood, D.: The Painlevé property and Hirota D-operators. SIAM 72, 39–63 (1985) zbMATHMathSciNetGoogle Scholar
  14. 14.
    Gilson, C., Lambert, F., Nimmo, J., Willox, R.: On the combinatorics of the Hirota D-operators. Proc. R. Soc. Lond. A 452, 223–234 (1996) zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Hietarinta, J.: Hirota’s bilinear method and partial integrability. In: Conte, R., Boccara, N. (eds.) Partially Integrable Evolution Equations in Physics, pp. 459–478. Kluwer Academic, Dordrecht (1990) Google Scholar
  16. 16.
    Hietarinta, J., Kruskal, M.D.: Hirota forms for the six Painlevé equations from singularity analysis. In: Levi, D., Winternitz, P. (eds.) Painlevé Transcendents—Their Asymptotics and Physical Applications, pp. 175–186. Plenum, New York (1992) Google Scholar
  17. 17.
    Hirota, R.: Direct method of finding exact solutions of nonlinear evolution equations. In: Miura, R. (ed.) Bäcklund Transformations, the Inverse Scattering Method, Solitons and Their Applications. Lecture Notes in Mathematics, vol. 515, pp. 40–68. Springer, Berlin (1976) CrossRefGoogle Scholar
  18. 18.
    Hirota, R.: Direct methods in soliton theory. In: Bullough, R.K., Caudrey, P.J. (eds.) Solitons, pp. 157–176. Springer, Berlin (1980) Google Scholar
  19. 19.
    Hirota, R., Satsuma, J.: N-soliton solutions of model equations for shallow water waves. J. Phys. Soc. Jpn. 40, 611–612 (1976) CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hirota, R., Satsuma, J.: Nonlinear evolution equations generated from the Bäcklund transformation for the Boussinesq equation. Prog. Theor. Phys. 57, 797–807 (1977) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Hopf, E.: The partial differential equation u t+uu x=μ u 2x. Commun. Pure Appl. Math. 3, 201–230 (1950) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Jimbo, M., Miwa, T.: Solitons and infinite dimensional lie algebras. Publ. Res. Inst. Math. Sci. 19, 943–1001 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539–541 (1970) zbMATHGoogle Scholar
  24. 24.
    Korteweg, D.J., de Vries, G.: On the change of the form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser. 5 39, 442–443 (1895) Google Scholar
  25. 25.
    Lambert, F., Springael, J., Colin, S., Willox, R.: An elementary approach to hierarchies of soliton equations. J. Phys. Soc. Jpn. 76, 054005-1–10 (2007) CrossRefGoogle Scholar
  26. 26.
    Lax, P.D.: Integrals of nonlinear equations of evolutions and solitary waves. Commun. Pure Appl. Math. 21, 467–490 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991) zbMATHGoogle Scholar
  28. 28.
    McKean, H.P.: Boussinesq’s equation on the circle. Commun. Pure Appl. Math. 34, 599–691 (1981) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Miura, R.M.: Korteweg-de Vries equation and generalizations. J. Math. Phys. 9, 1202–1204 (1968) zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ramani, A.: Inverse scattering, ordinary differential equations of Painlevé-type, and Hirota’s bilinear formalism. In: Lebowitz, J.L. (ed.) Proceedings of the Fourth International Conference on Collective Phenomena. Annals of the New York Academy of Science, pp. 54–67. New York Academy of Sciences, New York (1981) Google Scholar
  31. 31.
    Sawada, K., Kotera, T.: A method for finding N-soliton solutions of the KdV equation and KdV-like equations. Prog. Theor. Phys. 51, 1355–1367 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Wahlquist, H.D., Estabrook, F.B.: Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett. 31, 1386–1390 (1973) CrossRefMathSciNetGoogle Scholar
  33. 33.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974) zbMATHGoogle Scholar
  34. 34.
    Zakharov, V.E.: On the problem of stochastization of one-dimensional chains of linear oscillators. Z. Eksp. Teor. Fiz. 65, 219–225 (1973) Google Scholar
  35. 35.
    Zakharov, V.E.: On stochastization of one dimensional chains of nonlinear oscillations. Sov. Phys. JETP 38, 240–243 (1974) Google Scholar
  36. 36.
    Zakharov, V.E., Faddeev, L.D.: Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct. Anal. Appl. 5, 280–287 (1972) CrossRefGoogle Scholar
  37. 37.
    Zakharov, V.E., Shabat, A.B.: A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem. Funct. Anal. Appl. 8, 226–235 (1974) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Dienst Theoretische NatuurkundeVrije Universiteit BrusselBrusselsBelgium
  2. 2.Departement Milieu, Technologie en TechnologiemanagementUniversiteit AntwerpenAntwerpBelgium

Personalised recommendations