Advertisement

Acta Applicandae Mathematicae

, Volume 101, Issue 1–3, pp 121–132 | Cite as

Classical and Exceptional Root Systems and Quantizations

  • Hilja L. HuruEmail author
Article
  • 33 Downloads

Abstract

We present a method for quantizing semisimple Lie algebras. In Huru (Russ. Math. [2007]) we defined quantizations of the braided Lie algebra structure on a finite dimensional graded vector space V by quantizations of braided derivations on the exterior algebra of V * . We find quantizations of semisimple Lie algebras in this setting using the grading by their roots and shall go through all root systems, classical and exceptional.

Keywords

Simple graded Lie algebras Classical and exceptional root systems Quantizations 

Mathematics Subject Classification (2000)

17B20 17B70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J.F.: Lectures on Exceptional Lie Groups. University of Chicago Press, Chicago (1996) zbMATHGoogle Scholar
  2. 2.
    Enock, M., Vainerman, L.: Deformation of a Kac algebra by an Abelian subgroup. Commun. Math. Phys. 178, 517–596 (1996) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Gurevich, D.: The Yang Baxter equation and generalizations of formal Lie theory. Sov. Math. Dokl. 33, 758–762 (1986) zbMATHGoogle Scholar
  4. 4.
    Gurevich, D., Radul, A., Rubtsov, V.: Non-commutative differential geometry and Yang-Baxter equation. Preprint 88, Intitute des Hautes Etudies Scientifiques (1991) Google Scholar
  5. 5.
    Gurevich, D., Rubtsov, V.: Yang-Baxter equation and deformation of associative and Lie algebras. In: Quantum Groups Proceedings of Workshops at the Euler International Institute, pp. 47–55. Springer, Berlin (1990) Google Scholar
  6. 6.
    Hsiang, W.Y.: Lectures on Lie Groups. Series on Univ. Math., vol. 2. World Scientific, Singapore (1998) Google Scholar
  7. 7.
    Huru, H.L.: Associativity constraints, braidings and quantizations of modules with grading and action. Lobachevskii J. Math. 23, 5–27 (2006), http://ljm.ksu.ru/vol23/110.html zbMATHMathSciNetGoogle Scholar
  8. 8.
    Huru, H.L.: Quantization of braided algebras. 1. Monoidal categories. Lobachevskii J. Math. 24, 13–42 (2006), http://ljm.ksu.ru/vol24/121.html zbMATHMathSciNetGoogle Scholar
  9. 9.
    Huru, H.L.: Quantization of braided algebras. 2. Graded modules. Lobachevskii J. Math. 25, 131–160 (2007), http://ljm.ksu.ru/vol25/145.html zbMATHMathSciNetGoogle Scholar
  10. 10.
    Huru, H.L.: Braided symmetric and exterior algebras and quantizations of braided Lie algebras. Russ. Math. (2007, accepted) Google Scholar
  11. 11.
    Larsson, D., Silvestrov, S.: Graded quasi-Lie algebras. Czechoslov. J. Phys. 55(11), 1473–1478 (2005) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Lychagin, V.V.: Quantizations of braided differential operators. Erwin Schrödinger International Institute of Mathematical Physics, Wien, and Sophus Lie Center, Moscow, 1991 Google Scholar
  13. 13.
    Lychagin, V.V.: Calculus and quantizations over hopf algebras. Acta Appl. Math. 51, 303–352 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Lychagin, V.V.: Quantizations of differential equations. Nonlinear Anal. 47, 2621–2632 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5. Springer, New York (1998) zbMATHGoogle Scholar
  16. 16.
    Rittenberg, V., Wyler, D.: Generalized superalgebras. Nucl. Phys. B 139, 189–202 (1978) CrossRefMathSciNetGoogle Scholar
  17. 17.
    Scheunert, M.: Generalized Lie algebras. J. Math. Phys. 20(4), 712 (1979) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Serre, J.P.: Complex Semisimple Lie Algebras. Springer, Berlin (1987) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of TromsøTromsøNorway

Personalised recommendations