Acta Applicandae Mathematicae

, Volume 101, Issue 1–3, pp 231–241 | Cite as

Cartan’s Structure Theory of Symmetry Pseudo-Groups, Coverings and Multi-Valued Solutions for the Khokhlov–Zabolotskaya Equation

  • Oleg I. Morozov


We derive two non-equivalent coverings for the modified Khokhlov–Zabolotskaya equation from Maurer–Cartan forms of its symmetry pseudo-group. Also we find Bäcklund transformations between the obtained covering equations. We apply these results to constructing multi-valued solutions for the Khokhlov–Zabolotskaya equation.


Lie pseudo-groups Maurer–Cartan forms Symmetries of differential equations Coverings of differential equations 

Mathematics Subject Classification (2000)

58H05 58J70 35A30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bogoyavlenskiy, O.I.: Breaking Solitons. Nonlinear Integrable Equations. Nauka, Moscow (1991) Google Scholar
  2. 2.
    Bryant, R.L., Griffiths, Ph.A.: Characteristic cohomology of differential systems (II): conservation laws for a class of parabolic equations. Duke Math. J. 78, 531–676 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cartan, E.: Œuvres Complètes, Part II, vol. 2, Gauthier-Villars, Paris (1953) Google Scholar
  4. 4.
    Chang, J.-H., Tu, M.-H.: On the Miura map between the dispersionless KP and dispersionless modified KP hierarchies. J. Math. Phys. 41, 5391–5406 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dodd, R., Fordy, A.: The prolongation structures of quasipolynomial flows. Proc. R. Soc. Lond. A 385, 389–429 (1983) zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Estabrook, F.B.: Moving frames and prolongations algebras. J. Math. Phys. 23, 2071–2076 (1982) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fels, M., Olver, P.J.: Moving coframes. I. A practical algorithm. Acta Appl. Math. 51, 161–213 (1998) CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gardner, R.B.: The Method of Equivalence and its Applications. CBMS–NSF Regional Conference Series in Applied Math. SIAM, Philadelphia (1989) zbMATHGoogle Scholar
  9. 9.
    Harrison, B.K.: On methods of finding Bäcklund transformations in systems with more than two independent variables. J. Nonlinear Math. Phys. 2, 201–215 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harrison, B.K.: Matrix methods of searching for Lax pairs and a paper by Estévez. In: Proc. Inst. Math. NAS Ukraine, vol. 30, Part 1, pp. 17–24 (2000) Google Scholar
  11. 11.
    Hoenselaers, C.: More prolongation structures. Prog. Theor. Phys. 75, 1014–1029 (1986) CrossRefMathSciNetGoogle Scholar
  12. 12.
    Igonin, S.: Coverings and the fundamental group for partial differential equations. J. Geom. Phys. 56, 939–998 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Jakobsen, P., Lychagin, V., Romanovsky, Y.: Symmetries and non-linear phenomena, I. Preprint, Tromsø University (1997) Google Scholar
  14. 14.
    Jakobsen, P., Lychagin, V., Romanovsky, Y.: Symmetries and non-linear phenomena, II. Applications to nonlinear acoustics. Preprint, Tromsø University (1998) Google Scholar
  15. 15.
    Kamran, N.: Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential equations. Mem. Cl. Sci. Acad. R. Belg. 45, 7 (1989) MathSciNetGoogle Scholar
  16. 16.
    Krasil’shchik, I.S., Vinogradov, A.M.: Nonlocal symmetries and the theory of coverings. Acta Appl. Math. 2, 79–86 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Krasil’shchik, I.S., Lychagin, V.V., Vinogradov, A.M.: Geometry of Jet Spaces and Nonlinear Partial Differential Equations. Gordon and Breach, New York (1986) zbMATHGoogle Scholar
  18. 18.
    Krasil’shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 15, 161–209 (1989) CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Krasil’shchik, I.S., Vinogradov, A.M. (eds.): Symmetries and Conservation Laws for Differential Equations of Mathematical Physics. Transl. Math. Monographs, vol. 182. AMS, Providence (1999) zbMATHGoogle Scholar
  20. 20.
    Kuz’mina, G.M.: On a possibility to reduce a system of two first-order partial differential equations to a single equation of the second order. Proc. Mosc. State Pedag. Inst. 271, 67–76 (1967) (in Russian) MathSciNetGoogle Scholar
  21. 21.
    Kushner, A., Lychagin, V., Rubtsov, V.: Contact Geometry and Nonlinear Differential Equations. Cambridge University Press, Cambridge (2007) zbMATHGoogle Scholar
  22. 22.
    Marvan, M.: On zero-curvature representations of partial differential equations. In: Proc. Conf. Differ. Geom. Its Appl. Opava (Czech Republic), pp. 103–122 (1992) Google Scholar
  23. 23.
    Marvan, M.: A direct procedure to compute zero-curvature representations. The case \(\mathfrak{sl}_{2}\) . In: Proc. Int. Conf. on Secondary Calculus and Cohomological Physics, Moscow, Russia, 24–31 August, 1997. Available via the Internet at ELibEMS,
  24. 24.
    Morozov, O.I.: Moving coframes and symmetries of differential equations. J. Phys. A Math. Gen. 35, 2965–2977 (2002) zbMATHCrossRefGoogle Scholar
  25. 25.
    Morozov, O.I.: Contact-equivalence problem for linear hyperbolic equations. J. Math. Sci. 135, 2680–2694 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Morozov, O.I.: Coverings of differential equations and Cartan’s structure theory of Lie pseudo-groups. Acta Appl. Math. 99, 309–319 (2007) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Morris, H.C.: Prolongation structures and nonlinear evolution equations in two spatial dimensions. J. Math. Phys. 17, 1870–1872 (1976) CrossRefGoogle Scholar
  28. 28.
    Morris, H.C.: Prolongation structures and nonlinear evolution equations in two spatial dimensions: a general class of equations. J. Phys. A Math. Gen. 12, 261–267 (1979) CrossRefGoogle Scholar
  29. 29.
    Olver, P.J.: Equivalence, Invariants, and Symmetry. Cambridge University Press, Cambridge (1995) zbMATHGoogle Scholar
  30. 30.
    Sakovich, S.Yu.: On zero-curvature representations of evolution equations. J. Phys. A Math. Gen. 28, 2861–2869 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Tondo, G.S.: The eigenvalue problem for the three-wave resonant interaction in (2+1)-dimensions via the prolongation structure. Lett. Nuovo Cim. 44, 297–302 (1985) CrossRefMathSciNetGoogle Scholar
  32. 32.
    Wahlquist, H.D., Estabrook, F.B.: Prolongation structures of nonlinear evolution equations. J. Math. Phys. 16, 1–7 (1975) zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Zabolotskaya, E.A., Khokhlov, R.V.: Quasi-plane waves in the nonlinear acoustics of confined beams. Sov. Phys. Acoust. 15, 35–40 (1969) Google Scholar
  34. 34.
    Zakharov, V.E., Shabat, A.B.: Integration of nonlinear equations of mathematical physics by the method of inverse scattering II. Funct. Anal. Appl. 13, 166–174 (1980) Google Scholar
  35. 35.
    Zakharov, V.E.: Integrable Systems in Multidimensional Spaces. Lect. Notes Phys., vol. 153, pp. 190–216, Springer, New York (1982) Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Moscow State Technical University of Civil AviationMoscowRussia

Personalised recommendations