Acta Applicandae Mathematicae

, Volume 99, Issue 1, pp 1–27 | Cite as

About Asymptotic Behavior for a Transmission Problem in Hyperbolic Thermoelasticity

Article

Abstract

We consider a transmission problem in thermoelasticity with memory. We show the exponential decay of the solution in case of radially symmetric situations, as time goes to infinity.

Keywords

Transmission problem Materials with memory Asymptotic behavior of solutions 

Mathematics Subject Classification (2000)

35B40 74D05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athanasiadis, C., Stratis, I.G.: On some elliptic transmission problems. Ann. Polon. Math. 63(2), 137–154 (1996) MATHMathSciNetGoogle Scholar
  2. 2.
    Balmès, E., Germès, S.: Tools for viscoelastic damping treatment design. Application to an automotive floor panel. In: ISMA Conference Proceedings (2002) Google Scholar
  3. 3.
    Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fatori, L.H., Lueders, E., Muñoz Rivera, J.E.: Transmission problem for hyperbolic thermoelastic systems. J. Therm. Stress. 26(7), 739–763 (2003) CrossRefGoogle Scholar
  5. 5.
    Fatori, L.H., Muñoz Rivera, J.E.: Energy decay for hyperbolic thermoelastic systems of memory type. Q. Appl. Math. 59(3), 441–458 (2001) MATHGoogle Scholar
  6. 6.
    Ferry, J.D.: Mechanical properties of substances of high molecular weight; Dispersion in concentrated polymer solutions and its dependence on temperature and concentration. J. Am. Chem. Soc. 72, 37–46 (1953) Google Scholar
  7. 7.
    Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1970) Google Scholar
  8. 8.
    Germès, S., van Harpe, F.: Model reduction and substructuring for computing responses of structures containing frequency-dependent viscoelastic materials. In: Rao, V.S. (ed.) Smart Structures and Materials 2002: Modeling, Signal Processing, and Control. Proceedings of SPIE, vol. 4693, pp. 81–91. SPIE, Bellingham (2002) Google Scholar
  9. 9.
    Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968) MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Henry, D.B., A. Perissinitto, Jr., Lopes, O.: On the essential spectrum of a semigroup of thermoelasticity. Nonlinear Anal. 21(1), 65–75 (1993) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hörmander, L.: Linear Partial Differential Operators. Springer, Berlin (1976) MATHGoogle Scholar
  12. 12.
    Jiang, S., Muñoz Rivera, J.E., Racke, R.: Asymptotic stability and global existence in thermoelasticity with symmetry. Q. Appl. Math. 56(2), 259–275 (1998) MATHGoogle Scholar
  13. 13.
    Kim, J.U.: A boundary thin obstacle problem for a wave equation. Commun. Partial Differ. Equ. 14(8-9), 1011–1026 (1989) CrossRefMATHGoogle Scholar
  14. 14.
    Koch, H.: Slow decay in linear thermoelasticity. Q. Appl. Math. 58(4), 601–612 (2000) MATHGoogle Scholar
  15. 15.
    Kovacs, A.J.: La contraction isotherme du volume des polymères amorphes. J. Polym. Sci. 30(121), 131–147 (1958) CrossRefGoogle Scholar
  16. 16.
    Ladyzhenskaya, O., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic, New York (1968) (Translated from the Russian by Scripta Technica, L. Ehrenpreis (ed.)) MATHGoogle Scholar
  17. 17.
    Lebeau, G., Zuazua, E.: Decay rates for the three-dimensional linear system of thermoelasticity. Arch. Ration. Mech. Anal. 148(3), 179–231 (1999) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lions, J.-L.: Quelques Methodes de Résolution des Problèmes aux Limites non Linéaires. Dunod, Paris (1969) MATHGoogle Scholar
  19. 19.
    Lions, J.-L.: Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Masson, Paris (1988) Google Scholar
  20. 20.
    Marzocchi, A., Muñoz Rivera, J.E., Naso, M.G.: Asymptotic behaviour and exponential stability for a transmission problem in thermoelasticity. Math. Methods Appl. Sci. 25(11), 955–980 (2002) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Marzocchi, A., Muñoz Rivera, J.E., Naso, M.G.: Transmission problem in thermoelasticity with symmetry. IMA J. Appl. Math. 68(1), 23–46 (2003) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Muki, R., Sternberg, E.: On transient thermal stresses in viscoelastic material with temperature dependent properties. J. Appl. Mech. 28, 193–207 (1961) MATHMathSciNetGoogle Scholar
  23. 23.
    Muñoz Rivera, J.E., Portillo Oquendo, H.: The transmission problem of viscoelastic waves. Acta Appl. Math. 62(1), 1–21 (2000) MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Muñoz Rivera, J.E., Portillo Oquendo, H.: The transmission problem for thermoelastic beams. J. Therm. Stress. 24(12), 1137–1158 (2001) CrossRefGoogle Scholar
  25. 25.
    Muñoz Rivera, J.E., Portillo Oquendo, H.: Transmission problem for viscoelastic beams. Adv. Math. Sci. Appl. 12(1), 1–20 (2002) MATHMathSciNetGoogle Scholar
  26. 26.
    Nielsen, L.E., Landel, R.F.: Mechanical Properties of Polymers and Composites. Marcel Dekker, New York (1993) Google Scholar
  27. 27.
    Oh, K.: A theoretical and experimental study of modal interactions in metallic and laminated composite plates. Ph.D. thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA (1994) Google Scholar
  28. 28.
    Portillo Oquendo, H.: Viscoelastic boundary stabilization for a transmission problem in elasticity. IMA J. Appl. Math. 68(1), 83–97 (2003) MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Rao, M.: Recent applications of viscoelastic damping for noise control term in automobiles and commercial airplanes. J. Sound Vibr. 262(3), 457–474 (2003) CrossRefGoogle Scholar
  30. 30.
    Roy, N., Germès, S., Lefebvre, B., Balmès, E.: Damping allocation in automotive structures using reduced models. In: Sas, P., de Munck, M. (eds.) Proceedings of ISMA 2006, International Conference on Noise and Vibrating Engineering, pp. 3915–3924. Katholieke Universiteit Leuven, Leuven (2006) Google Scholar
  31. 31.
    Staffans, O.J.: On a nonlinear hyperbolic Volterra equation. SIAM J. Math. Anal. 11(5), 793–812 (1980) MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Tanner, R.I.: Engineering Rheology. Oxford University Press, New York (1988) Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.National Laboratory for Scientific ComputationQuitadinha-PetrópolisBrazil
  2. 2.Dipartimento di Matematica, Facoltà di IngegneriaUniversità di BresciaBresciaItaly

Personalised recommendations