Acta Applicandae Mathematica

, Volume 92, Issue 2, pp 97–111 | Cite as

The Exponentiated Type Distributions

  • Saralees NadarajahEmail author
  • Samuel Kotz


Gupta et al. [Commun. Stat., Theory Methods 27, 887–904, 1998] introduced the exponentiated exponential distribution as a generalization of the standard exponential distribution. In this paper, we introduce four more exponentiated type distributions that generalize the standard gamma, standard Weibull, standard Gumbel and the standard Fréchet distributions in the same way the exponentiated exponential distribution generalizes the standard exponential distribution. A treatment of the mathematical properties is provided for each distribution.

Key words

exponentiated exponential distribution exponentiated Fréchet distribution exponentiated gamma distribution exponentiated Gumbel distribution exponentiated Weibull distribution 

Mathematics Subject Classifications (2000)

33C90 62E99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 6th edn. Academic, San Diego, California (2000)zbMATHGoogle Scholar
  2. 2.
    Gupta, R.C., Gupta, P.L., Gupta, R.D.: Modeling failure time data by Lehman alternatives. Comm. Statist.,Theory Methods 27, 887–904 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Gupta, R.D., Kundu, D.: Exponentiated exponential family: an alternative to gamma and Weibull distributions. Biom. J. 43, 117–130 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Kotz, S., Nadarajah, S.: Extreme Value Distributions: Theory and Applications. Imperial College, London, UK (2000)zbMATHGoogle Scholar
  5. 5.
    Mudholkar, G.S., Hutson, A.D.: The exponentiated Weibull family: some properties and a flood data application. Comm. Statist., Theory Methods 25, 3059–3083 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Mudholkar, G.S., Srivastava, D.K., Freimer, M.: The exponentiated Weibull family. Technometrics 37, 436–445 (1995)zbMATHCrossRefGoogle Scholar
  7. 7.
    Nassar, M.M., Eissa, F.H.: On the exponentiated Weibull distribution. Comm. Statist., Theory Methods 32, 1317–1336 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Nadarajah, S., Kotz, S.: On the exponentiated exponential distribution, to appear in Statistica (2003)Google Scholar
  9. 9.
    Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series (vol. 1–3). Gordon and Breach Science, Amsterdam, Netherlands (1986)Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.School of MathematicsUniversity of ManchesterManchesterUK
  2. 2.Department of StatisticsUniversity of NebraskaLincolnUSA

Personalised recommendations