A Banach Algebra Version of the Sato Grassmannian and Commutative Rings of Differential Operators
Article
First Online:
- 57 Downloads
- 7 Citations
Abstract
We show that commutative rings of formal pseudodifferential operators can be conjugated as subrings in noncommutative Banach algebras of operators in the presence of certain eigenfunctions. Techniques involve those of the Sato Grassmannian as used in the study of the KP hierarchy as well as the geometry of an infinite dimensional Stiefel bundle with structure modeled on such Banach algebras. Generalizations of this procedure are also considered.
Key words
semigroup Fredholm operator Sato Grassmannian KP hierarchy Burchnall–Chaundy ring iterated Laurent seriesMathematics Subject Classifications (2000)
37K30 35Q53 58F37 58B25Preview
Unable to display preview. Download preview PDF.
References
- 1.Adams, M.R., Bergvelt, M.: The Krichever map, vector bundles over algebriac curves, and Heisenberg algebras. Comm. Math. Phys. 154(2), 265–305 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
- 2.Adler, M., Van Moerbeke, P.: Birkhoff strata, Bäcklund transformations, and regularization of isospectral operators. Adv. in Math. 108(1), 140–204 (1994)zbMATHCrossRefGoogle Scholar
- 3.Andruchow, E., Corach, G., Stojanoff, D.: Projective spaces of a C*-algebra. Integral Equations Operator Theory 37, 143–168 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
- 4.Bhatt, S.J., Dedania, H.V., Patel, S.R.: Fréchet algebras with a Laurent series generator and the annulus algebras. Bull. Austral. Math. Soc. 65(3), 371–383 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
- 5.Blackadar, B.: K-Theory for Operator Algebras Springer, Berlin Heidelberg New York (1986)zbMATHGoogle Scholar
- 6.Bojarski, B., Khimshiashvili, G.: Global geometric aspects of Riemann–Hilbert problems. Georgian Math. J. 8(4), 713–726 (2001)zbMATHMathSciNetGoogle Scholar
- 7.Corach, G., Porta, H., Recht, L.: Differential geometry of systems of projections in Banach algebras. Pacific J. Math. 143(2), 209–228 (1990)zbMATHMathSciNetGoogle Scholar
- 8.Drager, L.D., Foote, R.L., Martin, C.F., Wolper, J.: Controllability of linear systems, differential geometry curves in Grassmannians and generalized Grassmannians, and Riccati equations. Acta Appl. Math. 16, 281–317 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
- 9.Dupré, M.J., Glazebrook, J.F.: Infinite dimensional manifold structures on principal bundles. J. Lie. Theory 10, 359–373 (2000)zbMATHMathSciNetGoogle Scholar
- 10.Dupré, M.J., Glazebrook, J.F.: The Stiefel bundle of a Banach algebra. Integral Equations Operator Theory 41(3), 264–287 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
- 11.Dupré, M.J., Gazebrook, J.F.: Holomorphic framings for projections in a Banach algebra. Georgian Math. J. 9(3), 481–494 (2002)zbMATHMathSciNetGoogle Scholar
- 12.Dupré, M.J., Glazebrook, J.F.: Relative inversion and embeddings. Georgian Math. J. 11(3), 425–448 (2004)zbMATHMathSciNetGoogle Scholar
- 13.Dupré, M.J., Evard, J.-Cl., Glazebrook, J.F.: Smooth parametrization of subspaces of a Banach space. Rev. Un. Mat. Argentina 41(2), 1–13 (1998)zbMATHMathSciNetGoogle Scholar
- 14.Gohberg, I., Leiterer, J.: On cocycles, operator functions and families of subspaces. Mat. Issled. (Kisinev) 8, 23–56 (1973)zbMATHMathSciNetGoogle Scholar
- 15.Gohberg, I., Leiterer, J.: Über Algebren stetiger Operatorfunktionen. Stud. Math. LVII, 1–26 (1976)MathSciNetGoogle Scholar
- 16.Gramsch, B.: Relative inversion in der Störungstheorie von Operatoren und Ψ-Algebren. Math. Ann. 269, 27–71 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
- 17.Gramsch, B., Kaballo, W.: Multiplicative decompositions of holomorphic Fredholm functions and Ψ *-algebras. Math. Nachr. 204, 83–100 (1999)zbMATHMathSciNetGoogle Scholar
- 18.Helton, J.W.: Operator Theory, Analytic Functions, Matrices and Electrical Engineering Rhode Island, USA (1987)Google Scholar
- 19.Hermann, R.H., Martin, C.F.: Applications of algebraic geometry to systems theory: the McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants, SIAM J. Control Optim. 16, 743–755 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
- 20.Kasman, A.: Darboux transformations from n-KdV to KP. Acta Appl. Math. 49, 179–197 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
- 21.Khimshiashvili, G.: Homotopy classes of elliptic transmission problems over C*-algebras. Georgian Math. J. 5(5), 453–468 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
- 22.Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis Rhode Island, USA (1997)zbMATHGoogle Scholar
- 23.Lance, E.C.: Hilbert C*-Modules. London Math. Soc. Lecture Note 210. Cambridge University Press, UK (1995)Google Scholar
- 24.Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics Springer, Berlin Heidelberg New York (1998)zbMATHGoogle Scholar
- 25.Mickelsson, J.: Current Algebras and Groups Plenum, New York (1989)zbMATHGoogle Scholar
- 26.Mishchenko, A., Fomenko, A.: The index of elliptic operators over C*-algebras. Ser. Mat. 43, 831–859 (1979)zbMATHMathSciNetGoogle Scholar
- 27.Miwa, T., Jimbo. M., Date, E.: Solitons-differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge Tracts in Math. 135. Cambridge University Press, UK (2000)Google Scholar
- 28.Parshin, A.N.: On a ring of formal pseudodifferential operators. Proc. Steklov Inst. Math. 224, 266–280 (1999)zbMATHMathSciNetGoogle Scholar
- 29.Plaza-Martin, F.J.: Generalized KP hierarchy for several variables. arXiv.math.AG/0008004 (2000)Google Scholar
- 30.Porta, H., Recht, L.: Spaces of projections in a Banach algebra. Acta Cient. Venezolana 38, 408–426 (1987)zbMATHMathSciNetGoogle Scholar
- 31.Pressley, A., Segal, G.: Loop Groups and their Representations. Oxford University Press, London, UK (1986)Google Scholar
- 32.Previato, E., Wilson, G.: Vector bundles over curves and solutions of the KP equations. Proc. Sympos. Pure Math. 49(Part 1), Amer. Math. Soc., 553–569 (1989)Google Scholar
- 33.Peviato, E.: Multivariable Burchnall–Chaundy theory. Philos. Trans. Roy. Soc. London (in press)Google Scholar
- 34.Sato, M.: The KP hierarchy and infinite dimensional Grassmann manifolds. Proc. Sympos. Pure Math. 49(Part 1)(1989)Google Scholar
- 35.Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)zbMATHMathSciNetGoogle Scholar
- 36.Waelbroeck, L.: Topological Spaces and Algebras Springer, Berlin Heidelberg New York (1971)zbMATHGoogle Scholar
- 37.Zaidenberg, M.G., Krein, S.G., Kushment, P.A., Pankov, A.A.: Banach bundles and linear operators. Russian Math. Surveys. 30(5), 115–175 (1975)zbMATHCrossRefGoogle Scholar
Copyright information
© Springer Science + Business Media B.V. 2006