Advertisement

Acta Applicandae Mathematica

, Volume 92, Issue 3, pp 241–267 | Cite as

A Banach Algebra Version of the Sato Grassmannian and Commutative Rings of Differential Operators

  • Maurice J. DupréEmail author
  • James F. Glazebrook
  • Emma Previato
Article

Abstract

We show that commutative rings of formal pseudodifferential operators can be conjugated as subrings in noncommutative Banach algebras of operators in the presence of certain eigenfunctions. Techniques involve those of the Sato Grassmannian as used in the study of the KP hierarchy as well as the geometry of an infinite dimensional Stiefel bundle with structure modeled on such Banach algebras. Generalizations of this procedure are also considered.

Key words

semigroup Fredholm operator Sato Grassmannian KP hierarchy Burchnall–Chaundy ring iterated Laurent series 

Mathematics Subject Classifications (2000)

37K30 35Q53 58F37 58B25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M.R., Bergvelt, M.: The Krichever map, vector bundles over algebriac curves, and Heisenberg algebras. Comm. Math. Phys. 154(2), 265–305 (1993)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Adler, M., Van Moerbeke, P.: Birkhoff strata, Bäcklund transformations, and regularization of isospectral operators. Adv. in Math. 108(1), 140–204 (1994)zbMATHCrossRefGoogle Scholar
  3. 3.
    Andruchow, E., Corach, G., Stojanoff, D.: Projective spaces of a C*-algebra. Integral Equations Operator Theory 37, 143–168 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Bhatt, S.J., Dedania, H.V., Patel, S.R.: Fréchet algebras with a Laurent series generator and the annulus algebras. Bull. Austral. Math. Soc. 65(3), 371–383 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Blackadar, B.: K-Theory for Operator Algebras Springer, Berlin Heidelberg New York (1986)zbMATHGoogle Scholar
  6. 6.
    Bojarski, B., Khimshiashvili, G.: Global geometric aspects of Riemann–Hilbert problems. Georgian Math. J. 8(4), 713–726 (2001)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Corach, G., Porta, H., Recht, L.: Differential geometry of systems of projections in Banach algebras. Pacific J. Math. 143(2), 209–228 (1990)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Drager, L.D., Foote, R.L., Martin, C.F., Wolper, J.: Controllability of linear systems, differential geometry curves in Grassmannians and generalized Grassmannians, and Riccati equations. Acta Appl. Math. 16, 281–317 (1989)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Dupré, M.J., Glazebrook, J.F.: Infinite dimensional manifold structures on principal bundles. J. Lie. Theory 10, 359–373 (2000)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Dupré, M.J., Glazebrook, J.F.: The Stiefel bundle of a Banach algebra. Integral Equations Operator Theory 41(3), 264–287 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Dupré, M.J., Gazebrook, J.F.: Holomorphic framings for projections in a Banach algebra. Georgian Math. J. 9(3), 481–494 (2002)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Dupré, M.J., Glazebrook, J.F.: Relative inversion and embeddings. Georgian Math. J. 11(3), 425–448 (2004)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Dupré, M.J., Evard, J.-Cl., Glazebrook, J.F.: Smooth parametrization of subspaces of a Banach space. Rev. Un. Mat. Argentina 41(2), 1–13 (1998)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Gohberg, I., Leiterer, J.: On cocycles, operator functions and families of subspaces. Mat. Issled. (Kisinev) 8, 23–56 (1973)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Gohberg, I., Leiterer, J.: Über Algebren stetiger Operatorfunktionen. Stud. Math. LVII, 1–26 (1976)MathSciNetGoogle Scholar
  16. 16.
    Gramsch, B.: Relative inversion in der Störungstheorie von Operatoren und Ψ-Algebren. Math. Ann. 269, 27–71 (1984)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Gramsch, B., Kaballo, W.: Multiplicative decompositions of holomorphic Fredholm functions and Ψ *-algebras. Math. Nachr. 204, 83–100 (1999)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Helton, J.W.: Operator Theory, Analytic Functions, Matrices and Electrical Engineering Rhode Island, USA (1987)Google Scholar
  19. 19.
    Hermann, R.H., Martin, C.F.: Applications of algebraic geometry to systems theory: the McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants, SIAM J. Control Optim. 16, 743–755 (1978)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kasman, A.: Darboux transformations from n-KdV to KP. Acta Appl. Math. 49, 179–197 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Khimshiashvili, G.: Homotopy classes of elliptic transmission problems over C*-algebras. Georgian Math. J. 5(5), 453–468 (1998)zbMATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    Kriegl, A., Michor, P.W.: The Convenient Setting of Global Analysis Rhode Island, USA (1997)zbMATHGoogle Scholar
  23. 23.
    Lance, E.C.: Hilbert C*-Modules. London Math. Soc. Lecture Note 210. Cambridge University Press, UK (1995)Google Scholar
  24. 24.
    Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics Springer, Berlin Heidelberg New York (1998)zbMATHGoogle Scholar
  25. 25.
    Mickelsson, J.: Current Algebras and Groups Plenum, New York (1989)zbMATHGoogle Scholar
  26. 26.
    Mishchenko, A., Fomenko, A.: The index of elliptic operators over C*-algebras. Ser. Mat. 43, 831–859 (1979)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Miwa, T., Jimbo. M., Date, E.: Solitons-differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge Tracts in Math. 135. Cambridge University Press, UK (2000)Google Scholar
  28. 28.
    Parshin, A.N.: On a ring of formal pseudodifferential operators. Proc. Steklov Inst. Math. 224, 266–280 (1999)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Plaza-Martin, F.J.: Generalized KP hierarchy for several variables. arXiv.math.AG/0008004 (2000)Google Scholar
  30. 30.
    Porta, H., Recht, L.: Spaces of projections in a Banach algebra. Acta Cient. Venezolana 38, 408–426 (1987)zbMATHMathSciNetGoogle Scholar
  31. 31.
    Pressley, A., Segal, G.: Loop Groups and their Representations. Oxford University Press, London, UK (1986)Google Scholar
  32. 32.
    Previato, E., Wilson, G.: Vector bundles over curves and solutions of the KP equations. Proc. Sympos. Pure Math. 49(Part 1), Amer. Math. Soc., 553–569 (1989)Google Scholar
  33. 33.
    Peviato, E.: Multivariable Burchnall–Chaundy theory. Philos. Trans. Roy. Soc. London (in press)Google Scholar
  34. 34.
    Sato, M.: The KP hierarchy and infinite dimensional Grassmann manifolds. Proc. Sympos. Pure Math. 49(Part 1)(1989)Google Scholar
  35. 35.
    Segal, G., Wilson, G.: Loop groups and equations of KdV type. Publ. Math. IHES 61, 5–65 (1985)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Waelbroeck, L.: Topological Spaces and Algebras Springer, Berlin Heidelberg New York (1971)zbMATHGoogle Scholar
  37. 37.
    Zaidenberg, M.G., Krein, S.G., Kushment, P.A., Pankov, A.A.: Banach bundles and linear operators. Russian Math. Surveys. 30(5), 115–175 (1975)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • Maurice J. Dupré
    • 1
    Email author
  • James F. Glazebrook
    • 2
    • 3
  • Emma Previato
    • 4
    • 5
  1. 1.Department of MathematicsTulane UniversityNew OrleansUSA
  2. 2.Department of Mathematics and Computer ScienceEastern Illinois UniversityCharlestonUSA
  3. 3.Department of MathematicsUniversity of Illinois at Urbana–ChampaignUrbanaUSA
  4. 4.Institut Mittag–LefflerThe Royal Swedish Academy of SciencesDjursholmSweden
  5. 5.Department of MathematicsBoston UniversityBostonUSA

Personalised recommendations