Acta Applicandae Mathematica

, Volume 93, Issue 1–3, pp 215–236 | Cite as

On the Use of Cellular Automata in Symmetric Cryptography

Article

Abstract

In this work, pseudorandom sequence generators based on finite fields have been analyzed from the point of view of their cryptographic application. In fact, a class of nonlinear sequence generators has been modelled in terms of linear cellular automata. The algorithm that converts the given generator into a linear model based on automata is very simple and is based on the concatenation of a basic structure. Once the generator has been linearized, a cryptanalytic attack that exploits the weaknesses of such a model has been developed. Linear cellular structures easily model sequence generators with application in stream cipher cryptography.

Mathematics Subject Classifications (2000)

11T71 14G50 94A60 40B05 

Key words

automata finite fields cryptography sequence generator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Assis, F., Pedreira, C.: An architecture for computing Zech's logarithms in GF(2m). IEEE Trans. Comput. 49(5), 519–524 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bao, F.: Crytanalysis of a new cellular automata cryptosystem. 8th Australasian Conference on Information Security and Privacy – ACISP 2003. Lecture Notes in Computer Science, vol. 2727, pp. 416–427. Springer, Berlin Heidelberg New York (2003)Google Scholar
  3. 3.
    Blackburn, S., Merphy, S., Paterson, K.: Comments on ‘Theory and applications of cellular automata in cryptography’. IEEE Trans. Comput. 46, 637–638 (1997)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cattell, K., Muzio, J.: Analysis of one-dimensional linear hybrid cellular automata over GF(q). IEEE Trans. Comput. 45(7), 782–792 (1996)MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Cattell, K., Muzio, J.: Synthesis of one-dimensional linear hybrid cellular automata. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 15(3), 325–335 (1996)CrossRefGoogle Scholar
  6. 6.
    Cattell, K., Shujian, Z.: Minimal cost one-dimensional linear hybrid cellular automata of degree through 500. J. Electron. Test.: Theory Appl. 6, 255–258 (1995)CrossRefGoogle Scholar
  7. 7.
    Cattell, K., Muzio, J.: A linear cellular automata algorithm: Theory. Department of Computer Science. University of Victoria, Canada, Tech. Rep. DCS-161-IR, 1991Google Scholar
  8. 8.
    Coppersmith, D., Krawczyk H., Mansour, Y.: The shrinking generator. Advances in Cryptology –CRYPTO'93. Lecture Notes in Computer Science, vol. 773, pp. 22–39. Springer, Berlin Heidelberg New York (1994)Google Scholar
  9. 9.
    Cho, S., Un-Sook, C., Yoon-Hee, H.: Computing phase shifts of maximum-length 90/150 Cellular automata sequences. Proc. of ACRI 2004. Lecture Notes on Computer Science, vol. 3305, pp. 31–39. Springer, Berlin Heidelberg New York (2004)Google Scholar
  10. 10.
    Das, A.K., Ganguly, A., Dasgupta, A., Bhawmik, S., Chaudhuri, P.P.: Efficient characterisation of cellular automata. IEE Proc., Part E. 1, 81–87 (1990)Google Scholar
  11. 11.
    Golomb, S.: Shift-Register Sequences (revised edition). Aegean Park, Laguna Hills, California (1982)Google Scholar
  12. 12.
    Gong, G.: Theory and applications of q-ary interleaved sequences. IEEE Trans. Inform. Theory 41, 400–411 (1995)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Golic, J., O'Connors, L.: A cryptanalysis of clock-controlled shift registers with multiple steps. Cryptography: Policy and Algorithms 41, 174–185 (1995)Google Scholar
  14. 14.
    Johansson, T.: Complexity correlation attacks on two clock-controlled Generators. Proc. of Asiacrypt'98. Lecture Notes in Computer Science, vol. 1426, pp. 342–356. Springer, Berlin Heidelberg New York (1998)Google Scholar
  15. 15.
    Kanso, A.: Clock-controlled shrinking generator of feedback shift registers. 8th Australasian Conference on Information Security and Privacy – ACISP 2003. Lecture Notes in Computer Science, vol. 2727, pp. 443–451. Springer, Berlin Heidelberg New York (2003)Google Scholar
  16. 16.
    Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge, UK (1986)MATHGoogle Scholar
  17. 17.
    Martin, O., Odlyzko, A.M., Wolfram, S.: Algebraic properties of cellular automata. Comm. Math. Phys. 93, 219–258 (1984)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Menezes, A.J., van Oorschot, P., Vanstone, S.A.: Handbook of Applied Cryptography. CRC, New York (1997)MATHGoogle Scholar
  19. 19.
    Nandi, S., Kar, B.K., Chaudhuri, P.P.: Theory and applications of cellular automata in cryptography. IEEE Trans. Comput. 43, 1346–1357 (1994)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Rueppel, R.A.: Stream ciphers. In: Simmons G.J. (ed.) Contemporary Cryptology, The Science of Information, pp. 65–134. IEEE, Piscataway, New Jersey (1992)Google Scholar
  21. 21.
    Serra, M., Slater, T., Muzio, J., Miller, D.M.: The analysis of one-dimensional linear cellular automata and their aliasing properties. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 9(7), 767–778 (1990)CrossRefGoogle Scholar
  22. 22.
    Simpson, L. et al. Clock-a probabilistic correlation attack on the shrinking generator. Proc. of Australasian Conference on Information Security and Privacy – ACISP 1998. Lecture Notes in Computer Science, vol. 1438, pp. 147–158. Springer, Berlin Heidelberg New York (1998)Google Scholar
  23. 23.
    Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math. 7(123), (1986)Google Scholar
  24. 24.
    Wolfram, S.: Cryptography with cellular automata. Advances in Cryptology – CRYPTO'85. Lecture Notes in Computer Science, vol. 218, pp. 22–39. Springer, Berlin Heidelberg New York (1994)Google Scholar
  25. 25.
    Zhang, S.: Quantitative analysis for linear hybrid CA and LFSR as BIST generators for sequential faults. J. Electron. Test. 7(3), 209–221 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  1. 1.Instituto de Física Aplicada, C.S.I.C.MadridSpain
  2. 2.DEIOC, University of La LagunaLa Laguna, TenerifeSpain

Personalised recommendations