Acta Applicandae Mathematica

, Volume 88, Issue 1, pp 81–123 | Cite as

Topological Structures in Colombeau Algebras: Topological \(\widetilde{\mathbb{C}}\) -modules and Duality Theory

  • Claudia Garetto


We study modules over the ring \(\widetilde{\mathbb{C}}\) of complex generalized numbers from a topological point of view, introducing the notions of \(\widetilde{\mathbb{C}}\) -linear topology and locally convex \(\widetilde{\mathbb{C}}\) -linear topology. In this context particular attention is given to completeness, continuity of \(\widetilde{\mathbb{C}}\) -linear maps and elements of duality theory for topological \(\widetilde{\mathbb{C}}\) -modules. As main examples we consider various Colombeau algebras of generalized functions.


modules over the ring of complex generalized numbers algebras of generalized functions topology duality theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biagioni, H. A.: A Nonlinear Theory of Generalized Functions, Lecture Notes in Math. 1421, Springer, Berlin, 1990. Google Scholar
  2. 2.
    Biagioni, H. and Oberguggenberger, M.: Generalized solutions to Burgers’ equation, J. Differential Equations 97(2) (1992), 263–287. CrossRefGoogle Scholar
  3. 3.
    Biagioni, H. and Oberguggenberger, M.: Generalized solutions to the Korteweg–De Vries and the regularized long-wave equations, SIAM J. Math. Anal. 23(4) (1992), 923–940. CrossRefGoogle Scholar
  4. 4.
    Biagioni, H. A. and Colombeau, J. F.: New generalized functions and \(\mathcal{C}^{\infty}\) functions with values in generalized complex numbers, J. London Math. Soc. (2) 33(1) (1986), 169–179. Google Scholar
  5. 5.
    Bourbaki, N.: Elements of Mathematics. General Topology. Part 1, Hermann, Paris, 1966. Google Scholar
  6. 6.
    Colombeau, J. F.: New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984. Google Scholar
  7. 7.
    Colombeau, J. F.: Elementary Introduction to New Generalized Functions, North-Holland Math. Stud. 113, Elsevier Science Publishers, 1985. Google Scholar
  8. 8.
    Colombeau, J. F.: Multiplication of Distributions. A Tool in Mathematics, Numerical Engineering and Theoretical Physics, Lecture Notes in Math. 1532, Springer, New York, 1992. Google Scholar
  9. 9.
    Colombeau, J. F., Heibig, A. and Oberguggenberger, M.: Generalized solutions to partial differential equations of evolution type, Acta Appl. Math. 45(2) (1996), 115–142. CrossRefGoogle Scholar
  10. 10.
    Colombeau, J. F. and Oberguggenberger, M.: On a hyperbolic system with a compatible quadratic term: Generalized solutions, delta waves, and multiplication of distributions, Comm. Partial Differential Equations 15(7) (1990), 905–938. Google Scholar
  11. 11.
    Dapić, N., Pilipović, S. and Scarpalézos, D.: Microlocal analysis of Colombeau’s generalized functions: Propagation of singularities, J. Analyse Math. 75 (1998), 51–66. Google Scholar
  12. 12.
    Farkas, E., Grosser, M., Kunzinger, M. and Steinbauer, R.: On the foundations of nonlinear generalized functions I, Mem. Amer. Math. Soc. 153(729) (2001). Google Scholar
  13. 13.
    Garetto, C.: Pseudo-differential operators in algebras of generalized functions and global hypoellipticity, Acta Appl. Math. 80(2) (2004), 123–174. CrossRefGoogle Scholar
  14. 14.
    Garetto, C.: Topological structures in Colombeau algebras: Investigation of the duals of \({\mathcal {G}_{\mathrm {c}}(\Omega )}\) , \({\mathcal {G}(\Omega )}\) and \({ \mathcal {G}_{{S}}( \mathbb {R}^{n})}\) , Monatsh. Math. (2005, to appear); arXiv:math. FA/0408278. Google Scholar
  15. 15.
    Garetto, C., Gramchev, T. and Oberguggenberger, M.: Pseudo-differential operators with generalized symbols and regularity theory, Preprint 8-2003, University of Innsbruck, 2003. Google Scholar
  16. 16.
    Garetto, C. and Hörmann, G.: Microlocal analysis of generalized functions: Pseudodifferential techniques and propagation of singularities, Proc. Edinburgh Math. Soc. (2005, to appear); arXiv:math. AP/0401397. Google Scholar
  17. 17.
    Grosser, M.: On the foundations of nonlinear generalized functions II, Mem. Amer. Math. Soc. 153(729) (2001). Google Scholar
  18. 18.
    Grosser, M., Hörmann, G., Kunzinger, M. and Oberguggenberger, M. (eds): Nonlinear Theories of Generalized Functions, Proceedings of the Workshop at the Erwin Schrödinger Institute for Mathematical Physics, Vienna 1997, Chapman & Hall/CRC, Boca Raton, 1999. Google Scholar
  19. 19.
    Grosser, M., Kunzinger, M., Oberguggenberger, M. and Steinbauer, R.: Geometric Theory of Generalized Functions, Math. Appl. 537, Kluwer, Dordrecht, 2001. Google Scholar
  20. 20.
    Hörmann, G.: Integration and microlocal analysis in Colombeau algebras, J. Math. Anal. Appl. 239 (1999), 332–348. CrossRefGoogle Scholar
  21. 21.
    Hörmann, G.: First-order hyperbolic pseudodifferential equations with generalized symbols, J. Math. Anal. Appl. 293(1) (2004), 40–56. CrossRefGoogle Scholar
  22. 22.
    Hörmann, G.: Hölder–Zygmund regularity in algebras of generalized functions, Z. Anal. Anwendungen 23 (2004), 139–165. Google Scholar
  23. 23.
    Hörmann, G. and de Hoop, M. V.: Geophysical modeling with Colombeau functions:Microlocal properties and Zygmund regularity, In: Nonlinear Algebraic Analysis, A. Delcroix, M. Hasler, J.-A. Marti and V. Valmorin (eds), Taylor and Francis, London, 2004. e-Print math.AP/0104007. Google Scholar
  24. 24.
    Hörmann, G. and de Hoop, M. V.: Microlocal analysis and global solutions of some hyperbolic equations with discontinuous coefficients, Acta Appl. Math. 67 (2001), 173–224. CrossRefGoogle Scholar
  25. 25.
    Hörmann, G. and Kunzinger, M.: Microlocal analysis of basic operations in Colombeau algebras, J. Math. Anal. Appl. 261 (2001), 254–270. CrossRefGoogle Scholar
  26. 26.
    Hörmann, G. and Oberguggenberger, M.: Elliptic regularity and solvability for partial differential equations with Colombeau coefficients, Electron. J. Differential Equations 2004(14) (2004), 1–30. Google Scholar
  27. 27.
    Hörmann, G., Oberguggenberger, M. and Pilipovic, S.: Microlocal hypoellipticity of linear partial differential operators with generalized functions as coefficients, arXiv:math.AP/0303248, 2003. Google Scholar
  28. 28.
    Horváth, J.: Topological Vector Spaces and Distributions, Addison-Wesley, Reading, MA, 1966. Google Scholar
  29. 29.
    Kunzinger, M. and Oberguggenberger, M.: Group analysis of differential equations and generalized functions, SIAM J. Math. Anal. 31(6) (2000), 1192–1213. CrossRefGoogle Scholar
  30. 30.
    Lafon, F. and Oberguggenberger, M.: Generalized solutions to symmetric hyperbolic systems with discontinuous coefficients: The multidimensional case, J. Math. Anal. Appl. 160 (1991), 93–106. CrossRefGoogle Scholar
  31. 31.
    Lightstone, A. H. and Robinson, A.: Non-Archimedean Fields and Asymptotic Expansions, North-Holland, Amsterdam. Google Scholar
  32. 32.
    Nedeljkov, M., Pilipović, S. and Scarpalézos, D.: The Linear Theory of Colombeau Generalized Functions, Pitman Res. Notes Math. 385, Longman Scientific & Technical, 1998. Google Scholar
  33. 33.
    Oberguggenberger, M.: Generalized solutions to semilinear hyperbolic systems, Monatsh. Math. 103(2) (1987), 133–144. CrossRefGoogle Scholar
  34. 34.
    Oberguggenberger, M.: Hyperbolic systems with discontinuous coefficients: Generalized solutions and a transmission problem in acoustics, J. Math. Anal. Appl. 142 (1989), 452–467. CrossRefGoogle Scholar
  35. 35.
    Oberguggenberger, M.: The Carleman system with positive measures as initial data-generalized solutions, Transport Theory Statist. Phys. 20(2–3) (1991), 177–197. Google Scholar
  36. 36.
    Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Res. Notes Math. 259, Longman Scientific & Technical, 1992. Google Scholar
  37. 37.
    Oberguggenberger, M.: Generalized functions in nonlinear models – a survey, Nonlinear Anal. 47(8) (2001), 5029–5040. CrossRefGoogle Scholar
  38. 38.
    Oberguggenberger, M. and Kunzinger, M.: Characterization of Colombeau generalized functions by their point values, Math. Nachr. 203 (1999), 147–157. Google Scholar
  39. 39.
    Oberguggenberger, M., Pilipović, S. and Scarpalézos, D.: Local properties of Colombeau generalized functions, Math. Nachr. 256 (2003), 88–99. CrossRefGoogle Scholar
  40. 40.
    Oberguggenberger, M. and Todorov, T. D.: An embedding of Schwartz distributions in the algebra of asymptotic functions, Internat. J. Math. Math. Sci. 21(3) (1998). Google Scholar
  41. 41.
    Oberguggenberger, M. and Wang, Y. G.: Regularized conservation laws and nonlinear geometric optics, Monatsh. Math. 127(1) (1999), 55–66. CrossRefGoogle Scholar
  42. 42.
    Robertson, A. P. and Robertson, W.: Topological Vector Spaces, Cambridge Tracts in Math. 53, Cambridge University Press, Cambridge–New York, 1980. Google Scholar
  43. 43.
    Robinson, A.: Nonstandard Analysis, North-Holland, Amsterdam, 1966. Google Scholar
  44. 44.
    Robinson, A.: Function theory on some non-Archimedean fields, Amer. Math. Monthly 80(6) (1973), 87–109. Part II: Papers in the Foundations of Mathematics. Google Scholar
  45. 45.
    Royden, H. L.: Real Analysis, Macmillan, New York, 1988. Google Scholar
  46. 46.
    Scarpalézos, D.: Topologies dans les espaces de nouvelles fonctions généralisées de Colombeau. \({\widetilde{ \mathbb {C}}}\) -modules topologiques, Université Paris 7, 1992. Google Scholar
  47. 47.
    Scarpalézos, D.: Some remarks on functoriality of Colombeau’s construction; Topological and microlocal aspects and applications, Integral Transform. Spec. Funct. 6(1–4) (1998), 295–307. Google Scholar
  48. 48.
    Scarpalézos, D.: Colombeau’s generalized functions: Topological structures; microlocal properties. A simplified point of view, Bull. Cl. Sci. Math. Nat. Sci. Math. 25 (2000), 89–114. Google Scholar
  49. 49.
    Schaefer, H. H. and Wolff, M. P.: Topological Vector Spaces, Graduate Texts in Math. 3, Springer, New York, 1999. Google Scholar
  50. 50.
    Todorov, T. and Wolf, R. S.: Hahn field representation of Robinson’s asymptotic numbers, In: The Proceedings of the Conference on Generalized Functions, Guadalupe, 2000, to appear. Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Dipartimento di MatematicaUniversità di TorinoTorinoItalia

Personalised recommendations