Advertisement

Adaptive Ankle Resistance from a Wearable Robotic Device to Improve Muscle Recruitment in Cerebral Palsy

  • Benjamin C. Conner
  • Jason Luque
  • Zachary F. LernerEmail author
Original Article
  • 22 Downloads

Abstract

Individuals with cerebral palsy can have weak and poorly coordinated ankle plantar flexor muscles that contribute to inefficient walking patterns. Previous studies attempting to improve plantar flexor function have had inconsistent effects on mobility, likely due to a lack of task-specificity. The goal of this study was to develop, validate, and test the feasibility and neuromuscular response of a novel wearable adaptive resistance platform to increase activity of the plantar flexors during the propulsive phase of gait. We recruited eight individuals with spastic cerebral palsy to walk with adaptive plantar flexor resistance provided from an untethered exoskeleton. The resistance system and protocol was safe and feasible for all of our participants. Controller validation demonstrated our ability to provide resistance that proportionally- and instantaneously-adapted to the biological ankle moment (R = 0.92 ± 0.04). Following acclimation to resistance (0.16 ± 0.02 Nm/kg), more-affected limbs exhibited a 45 ± 35% increase in plantar flexor activity (p = 0.02), a 26 ± 24% decrease in dorsiflexor activity (p < 0.05), and a 46 ± 25% decrease in co-contraction (tibialis anterior and soleus) (p = 0.02) during the stance phase. This adaptive resistance system warrants further investigation for use in a longitudinal intervention study.

Keywords

Gait Task-specificity Co-contraction Training Soleus Untethered 

Abbreviations

CP

Cerebral palsy

PT

Physical therapy

GUI

Graphical user interface

GMFCS

Gross Motor Function Classification System

MVC

Maximum voluntary contraction

EMG

Electromyography

SOL

Soleus

TA

Tibialis anterior

R

Correlation coefficient

d

Cohen’s d

Notes

Acknowledgments

The authors would like to thank Nushka Remec, P.T., Emily Frank, R.N., Elizabeth Orum, and Jennifer Lawson for their assistance with data collection and processing. Research reported in this publication was supported in part by the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health under Award Number R03HD094583. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. This work was also supported in part by The University of Arizona College of Medicine – Phoenix MD/PhD Program.

Conflicts of interest

ZFL is a named inventor on a pending utility patent application that describes the exoskeleton utilized in the study. ZFL is a co-founder of a company seeking to commercialize the device.

Supplementary material

10439_2020_2454_MOESM1_ESM.pdf (229 kb)
Electronic supplementary material 1 (PDF 229 kb)

References

  1. 1.
    Anttila, H., I. Autti-Rämö, J. Suoranta, M. Mäkelä, and A. Malmivaara. Effectiveness of physical therapy interventions for children with cerebral palsy: a systematic review. BMC Pediatr. 8:14, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bastiaanse, C. M., J. Duysens, and V. Dietz. Modulation of cutaneous reflexes by load receptor input during human walking. Exp. Brain Res. 135:189–198, 2000.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Bayón, C., S. Lerma, O. Ramírez, J. I. Serrano, M. D. Del Castillo, R. Raya, J. M. Belda-Lois, I. Martínez, and E. Rocon. Locomotor training through a novel robotic platform for gait rehabilitation in pediatric population: short report. J. Neuroeng. Rehabil. 13:98, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Borggraefe, I., J. S. Schaefer, M. Klaiber, E. Dabrowski, C. Ammann-Reiffer, B. Knecht, S. Berweck, F. Heinen, and A. Meyer-Heim. Robotic-assisted treadmill therapy improves walking and standing performance in children and adolescents with cerebral palsy. Eur. J. Paediatr. Neurol. 14:496–502, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Brown, J. K., J. Rodda, E. G. Walsh, and G. W. Wright. Neurophysiology of lower-limb function in hemiplegic children. Dev. Med. Child Neurol. 33:1037–1047, 2008.CrossRefGoogle Scholar
  6. 6.
    Burdea, G. C., D. Cioi, A. Kale, W. E. Janes, S. A. Ross, and J. R. Engsberg. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy: a case study series. IEEE Trans. Neural Syst. Rehabil. Eng. 21:165–173, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Clark, B. C., J. R. Pierce, T. M. Manini, and L. L. Ploutz-Snyder. Effect of prolonged unweighting of human skeletal muscle on neuromotor force control. Eur. J. Appl. Physiol. 100:53–62, 2007.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Colborne, G. R., F. V. Wright, and S. Naumann. Feedback of triceps surae EMG in gait of children with cerebral palsy: a controlled study. Arch. Phys. Med. Rehabil. 75:40–45, 1994.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dallmeijer, A. J., R. Baker, K. J. Dodd, and N. F. Taylor. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy. Gait Posture 33:326–332, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Davids, J. R., D. J. Oeffinger, A. M. Bagley, M. Sison-Williamson, and G. Gorton. Relationship of Strength, Weight, Age, and Function in Ambulatory Children With Cerebral Palsy. J. Pediatr. Orthop. 35:523–529, 2015.PubMedCrossRefGoogle Scholar
  11. 11.
    de Mello Monteiro, C. B., T. Massetti, T. D. da Silva, J. van der Kamp, L. C. de Abreu, C. Leone, and G. J. P. Savelsbergh. Transfer of motor learning from virtual to natural environments in individuals with cerebral palsy. Res. Dev. Disabil. 35:2430–2437, 2014.PubMedCrossRefGoogle Scholar
  12. 12.
    Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54:1940–1950, 2007.PubMedCrossRefGoogle Scholar
  13. 13.
    Drużbicki, M., W. Rusek, S. Snela, J. Dudek, M. Szczepanik, E. Zak, J. Durmala, A. Czernuszenko, M. Bonikowski, and G. Sobota. Functional effects of robotic-assisted locomotor treadmill thearapy in children with cerebral palsy. J. Rehabil. Med. 45:358–363, 2013.PubMedCrossRefGoogle Scholar
  14. 14.
    Dursun, E., N. Dursun, and D. Alican. Effects of biofeedback treatment on gait in children with cerebral palsy. Disabil. Rehabil. 26:116–120, 2004.PubMedCrossRefGoogle Scholar
  15. 15.
    Eek, M. N., and E. Beckung. Walking ability is related to muscle strength in children with cerebral palsy. Gait Posture 28:366–371, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Gage, J. R., and T. F. Novacheck. An update on the treatment of gait problems in cerebral palsy. J. Pediatr. Orthop. B 10:265–274, 2001.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gage, J. R., M. H. Schwartz, S. E. Koop, and T. F. Novacheck. The Identification and Treatment of Gait Problems in Cerebral Palsy. London: Mac Keith Press, 2009.Google Scholar
  18. 18.
    Gasparri, G. M., J. Luque, and Z. F. Lerner. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 27:751–759, 2019.PubMedCrossRefGoogle Scholar
  19. 19.
    Ghasemi, A., and S. Zahediasl. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab. 10:486–489, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jezernik, S., G. Colombo, T. Keller, H. Frueh, and M. Morari. Robotic orthosis lokomat: a rehabilitation and research tool. Neuromodulation Technol. Neural Interface 6:108–115, 2003.CrossRefGoogle Scholar
  21. 21.
    Kang, J., D. Martelli, V. Vashista, I. Martinez-Hernandez, H. Kim, and S. K. Agrawal. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy. Sci. Robot. 2:2634, 2017.CrossRefGoogle Scholar
  22. 22.
    Lachenbruch, P. A., and J. Cohen. Statistical power analysis for the behavioral sciences. J. Am. Stat. Assoc. 1989.  https://doi.org/10.2307/2290095.CrossRefGoogle Scholar
  23. 23.
    Leonard, C. T., H. Hirschfeld, and H. Forssberg. The development of independent walking in children with cerebral palsy. Dev. Med. Child Neurol. 33:567–577, 2008.CrossRefGoogle Scholar
  24. 24.
    Leonard, C. T., T. Moritani, H. Hirschfeld, and H. Forssberg. Deficits in reciprocal inhibition of children with cerebral palsy as revealed by H reflex testing. Dev. Med. Child Neurol. 32:974–984, 2008.CrossRefGoogle Scholar
  25. 25.
    Lerner, Z. F., M. S. DeMers, S. L. Delp, and R. C. Browning. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 48:644–650, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lerner, Z. F., T. A. Harvey, and J. L. Lawson. a battery-powered ankle exoskeleton improves gait mechanics in a feasibility study of individuals with cerebral palsy. Ann. Biomed. Eng. 2019.  https://doi.org/10.1007/s10439-019-02237-w.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lotze, M., C. Braun, N. Birbaumer, S. Anders, and L. G. Cohen. Motor learning elicited by voluntary drive. Brain 126:866–872, 2003.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    McGowan, C. P., R. R. Neptune, D. J. Clark, and S. A. Kautz. Modular control of human walking: adaptations to altered mechanical demands. J. Biomech. 43:412–419, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Meyer-Heim, A., C. Ammann-Reiffer, A. Schmartz, J. Schafer, F. H. Sennhauser, F. Heinen, B. Knecht, E. Dabrowski, and I. Borggraefe. Improvement of walking abilities after robotic-assisted locomotion training in children with cerebral palsy. Arch. Dis. Child. 94:615–620, 2009.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mukaka, M. M. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24:69–71, 2012.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Novak, I., S. Mcintyre, C. Morgan, L. Campbell, L. Dark, N. Morton, E. Stumbles, S.-A. Wilson, and S. Goldsmith. A systematic review of interventions for children with cerebral palsy: state of the evidence. Dev. Med. Child Neurol. 55:885–910, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Olney, S. J., H. A. MacPhail, D. M. Hedden, and W. F. Boyce. Work and power in hemiplegic cerebral palsy gait. Phys. Ther. 70:431–438, 1990.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reid, L. B., S. E. Rose, and R. N. Boyd. Rehabilitation and neuroplasticity in children with unilateral cerebral palsy. Nat. Rev. Neurol. 11:390–400, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rose, J., J. G. Gamble, A. Burgos, J. Medeiros, and W. L. Haskell. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev. Med. Child Neurol. 32:333–340, 1990.PubMedCrossRefGoogle Scholar
  35. 35.
    Rossignol, S., R. Dubuc, and J.-P. Gossard. Dynamic sensorimotor interactions in locomotion. Physiol. Rev. 86:89–154, 2006.PubMedCrossRefGoogle Scholar
  36. 36.
    Schmidt, R. A., and T. D. Lee. Motor Control and Learning: A Behavioral Emphasis. Champaign: Human Kinetics, 2011.Google Scholar
  37. 37.
    Scholtes, V. A., J. G. Becher, A. Comuth, H. Dekkers, L. Van Dijk, and A. J. Dallmeijer. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev. Med. Child Neurol. 52:e107–e113, 2010.PubMedCrossRefGoogle Scholar
  38. 38.
    Scholtes, V. A., J. G. Becher, Y. J. Janssen-Potten, H. Dekkers, L. Smallenbroek, and A. J. Dallmeijer. Effectiveness of functional progressive resistance exercise training on walking ability in children with cerebral palsy: a randomized controlled trial. Res. Dev. Disabil. 33:181–188, 2012.PubMedCrossRefGoogle Scholar
  39. 39.
    Schroeder, A. S., M. Homburg, B. Warken, H. Auffermann, I. Koerte, S. Berweck, K. Jahn, F. Heinen, and I. Borggraefe. Prospective controlled cohort study to evaluate changes of function, activity and participation in patients with bilateral spastic cerebral palsy after Robot-enhanced repetitive treadmill therapy. Eur. J. Paediatr. Neurol. 18:502–510, 2014.PubMedCrossRefGoogle Scholar
  40. 40.
    Sutherland, D. H., L. Cooper, and D. Daniel. The role of the ankle plantar flexors in normal walking. J. Bone Joint Surg. Am. 62:354–363, 1980.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Taylor, N. F., K. J. Dodd, R. J. Baker, K. Willoughby, P. Thomason, and H. K. Graham. Progressive resistance training and mobility-related function in young people with cerebral palsy: a randomized controlled trial. Dev. Med. Child Neurol. 55:806–812, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Unnithan, V. B., J. J. Dowling, G. Frost, and O. Bar-Or. Role of cocontraction in the O2 cost of walking in children with cerebral palsy. Med. Sci. Sports Exerc. 28:1498–1504, 1996.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Verschuren, O., L. Ada, D. B. Maltais, J. W. Gorter, A. Scianni, and M. Ketelaar. Muscle strengthening in children and adolescents with spastic cerebral palsy: considerations for future resistance training protocols. Phys. Ther. 91:1130–1139, 2011.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wiley, M. E., and D. L. Damiano. Lower-extremity strength profiles in spastic cerebral palsy. Dev. Med. Child Neurol. 40:100–107, 1998.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Winstein, C., R. Lewthwaite, S. R. Blanton, L. B. Wolf, and L. Wishart. Infusing motor learning research into neurorehabilitation practice: a historical perspective with case exemplar from the accelerated skill acquisition program. J. Neurol. Phys. Ther. 38:190–200, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Winters, T. F., J. R. Gage, and R. Hicks. Gait patterns in spastic hemiplegia in children and young adults. J. Bone Joint Surg. Am. 69:437–441, 1987.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Biomedical Engineering Society 2020

Authors and Affiliations

  1. 1.College of Medicine – PhoenixUniversity of ArizonaPhoenixUSA
  2. 2.Department of Mechanical EngineeringNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations