Advertisement

Design of an Adhesive Film-Based Microfluidic Device for Alginate Hydrogel-Based Cell Encapsulation

  • Kevin Enck
  • Shiny Priya Rajan
  • Julio Aleman
  • Simone Castagno
  • Emily Long
  • Fatma Khalil
  • Adam R. Hall
  • Emmanuel C. OparaEmail author
Bioengineering and Enabling Technologies
  • 40 Downloads

Abstract

To support the increasing translational use of transplanted cells, there is a need for high-throughput cell encapsulation technologies. Microfluidics is a particularly promising candidate technology to address this need, but conventional polydimethylsiloxane devices have encountered challenges that have limited their utility, including clogging, leaking, material swelling, high cost, and limited scalability. Here, we use a rapid prototyping approach incorporating patterned adhesive thin films to develop a reusable microfluidic device that can produce alginate hydrogel microbeads with high-throughput potential for microencapsulation applications. We show that beads formed in our device have high sphericity and monodispersity. We use the system to demonstrate effective cell encapsulation of mesenchymal stem cells and show that they can be maintained in culture for at least 28 days with no measurable reduction in viability. Our approach is highly scalable and will support diverse translational applications of microencapsulated cells.

Keywords

Alginate Microencapsulation Stem cell Cell transplantation 

Notes

Acknowledgments

The authors would like to acknowledge the support of Michael Hunckler, Michael LeCompte, and Paige Brabant for their technical help on this project. K.E. acknowledges support from the NIH T32 Training Program entitled Studies in Translational Regenerative Medicine (EB014836-01A1).

Supplementary material

10439_2020_2453_MOESM1_ESM.docx (640 kb)
Supplementary material 1 (DOCX 639 kb)

References

  1. 1.
    Abate, A. R., M. Kutsovsky, S. Seiffert, M. Windbergs, L. F. Pinto, A. Rotem, A. S. Utada, and D. A. Weitz. Synthesis of monodisperse microparticles from non-Newtonian polymer solutions with microfluidic devices. Adv. Mater. 23(15):1757–1760, 2011.PubMedCrossRefGoogle Scholar
  2. 2.
    Akbari, S., and T. Pirbodaghi. Microfluidic encapsulation of cells in alginate particles via an improved internal gelation approach. Microfluid. Nanofluid. 16(4):773–777, 2014.CrossRefGoogle Scholar
  3. 3.
    Andersson, H., and A. Van den Berg. Microfluidic devices for cellomics: a review. Sens. Actuators B 92(3):315–325, 2003.CrossRefGoogle Scholar
  4. 4.
    Atencia, J., G. A. Cooksey, and L. E. Locascio. A robust diffusion-based gradient generator for dynamic cell assays. Lab Chip 12(2):309–316, 2012.PubMedCrossRefGoogle Scholar
  5. 5.
    Boura, J. S., M. Vance, W. Yin, C. Madeira, C. L. Da Silva, C. D. Porada, and G. Almeida-Porada. Evaluation of gene delivery strategies to efficiently overexpress functional HLA-G on human bone marrow stromal cells. Mol. Ther. Methods Clin. Dev. 2014.  https://doi.org/10.1038/mtm.2014.41.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Breslouer, O. Rayleigh–Plateau Instability: Falling Jet. Project Report. 2010.Google Scholar
  7. 7.
    Chabert, M., and J.-L. Viovy. Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc. Natl Acad. Sci. USA 105(9):3191–3196, 2008.PubMedCrossRefGoogle Scholar
  8. 8.
    Chaurasia, A. S., and S. Sajjadi. Millimetric core–shell drops via buoyancy assisted non-confined microfluidics. Chem. Eng. Sci. 129:260–270, 2015.CrossRefGoogle Scholar
  9. 9.
    Choi, C.-H., J.-H. Jung, Y. W. Rhee, D.-P. Kim, S.-E. Shim, and C.-S. Lee. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 9(6):855–862, 2007.PubMedCrossRefGoogle Scholar
  10. 10.
    Christopher, G. F., N. N. Noharuddin, J. A. Taylor, and S. L. Anna. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78(3):036317, 2008.CrossRefGoogle Scholar
  11. 11.
    Chung, B. G., K.-H. Lee, A. Khademhosseini, and S.-H. Lee. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12(1):45–59, 2012.PubMedCrossRefGoogle Scholar
  12. 12.
    Cirone, P., F. Shen, and P. L. Chang. A multiprong approach to cancer gene therapy by coencapsulated cells. Cancer Gene Ther. 12(4):369, 2005.PubMedCrossRefGoogle Scholar
  13. 13.
    Clausell-Tormos, J., D. Lieber, J.-C. Baret, A. El-Harrak, O. J. Miller, L. Frenz, J. Blouwolff, K. J. Humphry, S. Köster, and H. Duan. Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem. Biol. 15(5):427–437, 2008.PubMedCrossRefGoogle Scholar
  14. 14.
    Collins, D. J., A. Neild, A. deMello, A.-Q. Liu, and Y. Ai. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15(17):3439–3459, 2015.PubMedCrossRefGoogle Scholar
  15. 15.
    Cooksey, G. A., and J. Atencia. Pneumatic valves in folded 2D and 3D fluidic devices made from plastic films and tapes. Lab Chip 14(10):1665–1668, 2014.PubMedCrossRefGoogle Scholar
  16. 16.
    De Vos, P., B. De Haan, G. Wolters, J. Strubbe, and R. Van Schilfgaarde. Improved biocompatibility but limited graft survival after purification of alginate for microencapsulation of pancreatic islets. Diabetologia 40(3):262–270, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    de Vos, P., M. M. Faas, B. Strand, and R. Calafiore. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27(32):5603–5617, 2006.PubMedCrossRefGoogle Scholar
  18. 18.
    Dvir-Ginzberg, M., T. Elkayam, and S. Cohen. Induced differentiation and maturation of newborn liver cells into functional hepatic tissue in macroporous alginate scaffolds. FASEB J. 22(5):1440–1449, 2008.PubMedCrossRefGoogle Scholar
  19. 19.
    Edd, J. F., D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner. Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264, 2008.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Gelb, H., H. Ralph Schumacher, J. Cuckler, and D. G. Baker. In vivo inflammatory response to polymethylmethacrylate particulate debris: effect of size, morphology, and surface area. J. Orthop. Res. 12(1):83–92, 1994.PubMedCrossRefGoogle Scholar
  21. 21.
    Gombotz, W. R., and S. Wee. Protein release from alginate matrices. Adv. Drug Deliv. Rev. 31(3):267–285, 1998.PubMedCrossRefGoogle Scholar
  22. 22.
    Huang, K.-S., T.-H. Lai, and Y.-C. Lin. Manipulating the generation of Ca–alginate microspheres using microfluidic channels as a carrier of gold nanoparticles. Lab Chip 6(7):954–957, 2006.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang, H., Y. Yu, Y. Hu, X. He, O. B. Usta, and M. L. Yarmush. Generation and manipulation of hydrogel microcapsules by droplet-based microfluidics for mammalian cell culture. Lab Chip 17(11):1913–1932, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jayasinghe, S. N., A. N. Qureshi, and P. A. Eagles. Electrohydrodynamic jet processing: an advanced electric-field-driven jetting phenomenon for processing living cells. Small 2(2):216–219, 2006.PubMedCrossRefGoogle Scholar
  25. 25.
    Jenkins, G., and C. D. Mansfield. Microfluidic Diagnostics: Methods and Protocols. Cham: Springer, 2013.CrossRefGoogle Scholar
  26. 26.
    Jing, T., R. Ramji, M. E. Warkiani, J. Han, C. T. Lim, and C.-H. Chen. Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens. Bioelectron. 66:19–23, 2015.PubMedCrossRefGoogle Scholar
  27. 27.
    Köster, S., F. E. Angile, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, and A. D. Griffiths. Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115, 2008.PubMedCrossRefGoogle Scholar
  28. 28.
    Krishnamurthy, N., and B. Gimi. Encapsulated cell grafts to treat cellular deficiencies and dysfunction. Crit. Rev. Biomed. Eng. 2011.  https://doi.org/10.1615/critrevbiomedeng.v39.i6.10.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lee, K. Y., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37(1):106–126, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu, K., Y. Deng, N. Zhang, S. Li, H. Ding, F. Guo, W. Liu, S. Guo, and X.-Z. Zhao. Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid. Nanofluid. 13(5):761–767, 2012.CrossRefGoogle Scholar
  31. 31.
    Martinez, C. J., J. W. Kim, C. Ye, I. Ortiz, A. C. Rowat, M. Marquez, and D. Weitz. A microfluidic approach to encapsulate living cells in uniform alginate hydrogel microparticles. Macromol. Biosci. 12(7):946–951, 2012.PubMedCrossRefGoogle Scholar
  32. 32.
    McQuilling, J., J. Arenas-Herrera, C. Childers, R. Pareta, O. Khanna, B. Jiang, E. Brey, A. Farney, and E. Opara. New alginate microcapsule system for angiogenic protein delivery and immunoisolation of islets for transplantation in the rat omentum pouch. Transplant. Proc. 43:3262–3264, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Meier, R. P., R. Mahou, P. Morel, J. Meyer, E. Montanari, Y. D. Muller, P. Christofilopoulos, C. Wandrey, C. Gonelle-Gispert, and L. H. Bühler. Microencapsulated human mesenchymal stem cells decrease liver fibrosis in mice. J. Hepatol. 62(3):634–641, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Nasef, A., N. Mathieu, A. Chapel, J. Frick, S. François, C. Mazurier, A. Boutarfa, S. Bouchet, N.-C. Gorin, and D. Thierry. Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation 84(2):231–237, 2007.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ngo, I.-L., T.-D. Dang, C. Byon, and S. W. Joo. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction. Biomicrofluidics 9(2):024107, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nunes, J., S. Tsai, J. Wan, and H. Stone. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D 46(11):114002, 2013.CrossRefGoogle Scholar
  37. 37.
    Opara, E. C., J. P. McQuilling, and A. C. Farney. Microencapsulation of pancreatic islets for use in a bioartificial pancreas. In: Organ Regeneration: Methods and Protocols, edited by J. Basu, and J. W. Ludlow. Totowa, NJ: Humana Press, 2013, pp. 261–266.CrossRefGoogle Scholar
  38. 38.
    Pessi, J., H. A. Santos, I. Miroshnyk, D. A. Weitz, and S. Mirza. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int. J. Pharm. 472(1–2):82–87, 2014.PubMedCrossRefGoogle Scholar
  39. 39.
    Ponticiello, M. S., R. M. Schinagl, S. Kadiyala, and F. P. Barry. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 52(2):246–255, 2000.Google Scholar
  40. 40.
    Ramdas, M., K. Dileep, Y. Anitha, W. Paul, and C. P. Sharma. Alginate encapsulated bioadhesive chitosan microspheres for intestinal drug delivery. J. Biomater. Appl. 13(4):290–296, 1999.PubMedCrossRefGoogle Scholar
  41. 41.
    Rasband, W. S. ImageJ. Bethesda, MD: US National Institutes of Health, 2011. http://imagej.nih.gov/ij/.
  42. 42.
    Sajeesh, P., and A. K. Sen. Particle separation and sorting in microfluidic devices: a review. Microfluid. Nanofluid. 17(1):1–52, 2014.CrossRefGoogle Scholar
  43. 43.
    Sauret, A., and H. C. Shum. Beating the jetting regime. Int. J. Nonlinear Sci. Numer. Simul. 13(5):351–362, 2012.CrossRefGoogle Scholar
  44. 44.
    Schmitz, C. H., A. C. Rowat, S. Köster, and D. A. Weitz. Dropspots: a picoliter array in a microfluidic device. Lab Chip 9(1):44–49, 2009.PubMedCrossRefGoogle Scholar
  45. 45.
    Selmani, Z., A. Naji, E. Gaiffe, L. Obert, P. Tiberghien, N. Rouas-Freiss, E. D. Carosella, and F. Deschaseaux. HLA-G is a crucial immunosuppressive molecule secreted by adult human mesenchymal stem cells. Transplantation 87(9S):S62–S66, 2009.PubMedCrossRefGoogle Scholar
  46. 46.
    Sharma, V., M. Hunckler, M. K. Ramasubramanian, E. C. Opara, and K. C. Katuri. Microfluidic approach to cell microencapsulation. cell microencapsulation, New York: Springer, 2017, pp. 71–76.CrossRefGoogle Scholar
  47. 47.
    Shintaku, H., T. Kuwabara, S. Kawano, T. Suzuki, I. Kanno, and H. Kotera. Micro cell encapsulation and its hydrogel-beads production using microfluidic device. Microsyst. Technol. 13(8–10):951–958, 2007.CrossRefGoogle Scholar
  48. 48.
    Sia, S. K., and G. M. Whitesides. Microfluidic devices fabricated in poly (dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576, 2003.PubMedCrossRefGoogle Scholar
  49. 49.
    Sittadjody, S., J. M. Saul, J. P. McQuilling, S. Joo, T. C. Register, J. J. Yoo, A. Atala, and E. C. Opara. In vivo transplantation of 3D encapsulated ovarian constructs in rats corrects abnormalities of ovarian failure. Nat. Commun. 8(1):1858, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tan, W. H., and S. Takeuchi. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19(18):2696–2701, 2007.CrossRefGoogle Scholar
  51. 51.
    Tendulkar, S., J. McQuilling, C. Childers, R. Pareta, E. Opara, and M. Ramasubramanian. A scalable microfluidic device for the mass production of microencapsulated islets. Transplant. Proc. 43:3184–3187, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tendulkar, S., M. K. Ramasubramanian, and E. C. Opara. Microencapsulation: the emerging role of microfluidics. Micro Nanosyst. 5(3):194–208, 2013.CrossRefGoogle Scholar
  53. 53.
    Tønnesen, H. H., and J. Karlsen. Alginate in drug delivery systems. Drug Dev. Ind. Pharm. 28(6):621–630, 2002.PubMedCrossRefGoogle Scholar
  54. 54.
    Townsend-Nicholson, A., and S. N. Jayasinghe. Cell electrospinning: a unique biotechnique for encapsulating living organisms for generating active biological microthreads/scaffolds. Biomacromolecules 7(12):3364–3369, 2006.PubMedCrossRefGoogle Scholar
  55. 55.
    Trivedi, V., E. S. Ereifej, A. Doshi, P. Sehgal, P. J. VandeVord, and A. S. Basu. Microfluidic encapsulation of cells in alginate capsules for high throughput screening. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009, pp. 7037–7040.Google Scholar
  56. 56.
    Utada, A., L.-Y. Chu, A. Fernandez-Nieves, D. Link, C. Holtze, and D. Weitz. Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull. 32(9):702–708, 2007.CrossRefGoogle Scholar
  57. 57.
    Utada, A., E. Lorenceau, D. Link, P. Kaplan, H. Stone, and D. Weitz. Monodisperse double emulsions generated from a microcapillary device. Science 308(5721):537–541, 2005.PubMedCrossRefGoogle Scholar
  58. 58.
    Utech, S., R. Prodanovic, A. S. Mao, R. Ostafe, D. J. Mooney, and D. A. Weitz. Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv. Healthc. Mater. 4(11):1628–1633, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Velasco, D., E. Tumarkin, and E. Kumacheva. Microfluidic encapsulation of cells in polymer microgels. Small 8(11):1633–1642, 2012.PubMedCrossRefGoogle Scholar
  60. 60.
    Venkatesan, J., I. Bhatnagar, P. Manivasagan, K.-H. Kang, and S.-K. Kim. Alginate composites for bone tissue engineering: a review. Int. J. Biol. Macromol. 72:269–281, 2015.PubMedCrossRefGoogle Scholar
  61. 61.
    Whitesides, G. M. The origins and the future of microfluidics. Nature 442(7101):368, 2006.PubMedCrossRefGoogle Scholar
  62. 62.
    Windbergs, M., Y. Zhao, J. Heyman, and D. A. Weitz. Biodegradable core–shell carriers for simultaneous encapsulation of synergistic actives. J. Am. Chem. Soc. 135(21):7933–7937, 2013.PubMedCrossRefGoogle Scholar
  63. 63.
    Workman, V. L., S. B. Dunnett, P. Kille, and D. D. Palmer. On-chip alginate microencapsulation of functional cells. Macromol. Rapid Commun. 29(2):165–170, 2008.CrossRefGoogle Scholar
  64. 64.
    Workman, V. L., L. B. Tezera, P. T. Elkington, and S. N. Jayasinghe. Controlled generation of microspheres incorporating extracellular matrix fibrils for three-dimensional cell culture. Adv. Funct. Mater. 24(18):2648–2657, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Xu, J., S. Li, J. Tan, and G. Luo. Controllable preparation of monodispersed calcium alginate microbeads in a novel microfluidic system. Chem. Eng. Technol. Ind. Chem. Plant Equip. Process Eng. Biotechnol. 31(8):1223–1226, 2008.Google Scholar
  66. 66.
    Yamada, M., R. Utoh, K. Ohashi, K. Tatsumi, M. Yamato, T. Okano, and M. Seki. Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33(33):8304–8315, 2012.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang, Y., E. C. Opara, Y. Liu, A. Atala, and W. Zhao. Microencapsulation of porcine thyroid cell organoids within a polymer microcapsule construct. Exp. Biol. Med. 242(3):286–296, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2020

Authors and Affiliations

  • Kevin Enck
    • 1
    • 2
  • Shiny Priya Rajan
    • 1
    • 2
  • Julio Aleman
    • 1
  • Simone Castagno
    • 3
  • Emily Long
    • 4
  • Fatma Khalil
    • 1
  • Adam R. Hall
    • 1
    • 2
  • Emmanuel C. Opara
    • 1
    • 2
    Email author
  1. 1.Wake Forest Institute for Regenerative MedicineWake Forest School of MedicineWinston-SalemUSA
  2. 2.Virginia Tech-Wake Forest School of Biomedical Engineering and SciencesWake Forest School of MedicineWinston-SalemUSA
  3. 3.Imperial College LondonLondonUK
  4. 4.Wake Forest Institute for Regenerative Medicine Summer Undergraduate Research Program, Wake Forest School of MedicineMedical CenterWinston-SalemUSA

Personalised recommendations