Advertisement

Experimental and Finite Element Analysis of Force and Temperature in Ultrasonic Vibration Assisted Bone Cutting

  • Zhenzhi Ying
  • Liming ShuEmail author
  • Naohiko Sugita
Original Article
  • 54 Downloads

Abstract

Bone cutting is an essential procedure of orthopedic surgery, while irreversible bone damage would be inevitably caused using the conventional cutting (CC) method. In this study, an ultrasonic vibration-assisted cutting (UVAC) method was applied in bone cutting to investigate the cutting performance, considering the cutting force and temperature rise, in comparison with CC. In addition, a finite element (FE) model was developed to investigate the cutting mechanism and the influence of a wide range of processing parameters on the performance of cutting bone. The results indicate that the proposed FE model shows good correlation with the experimental results for both cutting force and temperature. UVAC can significantly reduce the cutting force and increase the temperature in comparison with CC from the experimental and predicted results. The cutting force tends to decrease with the increasing vibrational parameters and decreasing cutting speed, while the temperature increases. The verified FE bone cutting model provides an efficient way to assist the optimization of the processing conditions in bone cutting operations.

Keywords

Bone Ultrasonic vibration Cutting force Temperature Finite element model 

Notes

Acknowledgments

The authors thank Dr. Fang from The University of Tokyo for advice and equipment support in the experiment.

Conflict of interest

No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this manuscript.

References

  1. 1.
    Alam, K., A. Ghafoor, and V. V. Silberschmidt. Analysis of forces and temperatures in conventional and ultrasonically-assisted cutting of bone. Adv. Mater. Res. 223:247–254, 2011.CrossRefGoogle Scholar
  2. 2.
    Alam, K., M. Khan, and V. V. Silberschmidt. Analysis of forces in conventional and ultrasonically assisted plane cutting of cortical bone. Proc. Inst. Mech. Eng. Part H 227:636–642, 2013.CrossRefGoogle Scholar
  3. 3.
    Alam, K., A. V. Mitrofanov, and V. V. Silberschmidt. Finite element analysis of forces of plane cutting of cortical bone. Comput. Mater. Sci. 46:738–743, 2009.CrossRefGoogle Scholar
  4. 4.
    Augustin, G., S. Davila, K. Mihoci, T. Udiljak, D. S. Vedrina, and A. Antabak. Thermal osteonecrosis and bone drilling parameters revisited. Arch. Orthop. Trauma Surg. 128:71–77, 2008.CrossRefGoogle Scholar
  5. 5.
    Babitsky, V. I., A. V. Mitrofanov, and V. V. Silberschmidt. Ultrasonically assisted turning of aviation materials: simulations and experimental study. Ultrasonics 42:81–86, 2004.CrossRefGoogle Scholar
  6. 6.
    Brehl, D. E., and T. A. Dow. Review of vibration-assisted machining. Precis. Eng. 32:153–172, 2008.CrossRefGoogle Scholar
  7. 7.
    Eriksson, A. R., and T. Albrektsson. Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J. Prosthet. Dent. 50:101–107, 1983.CrossRefGoogle Scholar
  8. 8.
    Giraud, J.-Y., S. Villemin, R. Darmana, J.-P. Cahuzac, A. Autefage, and J.-P. Morucci. Bone cutting. Clin. Phys. Physiol. Meas. 12:1–19, 1991.CrossRefGoogle Scholar
  9. 9.
    Hosseini, P., G. M. Mundis, Jr, R. Eastlack, J. Pawelek, S. Nguyen, and B. A. Akbarnia. Is there a role for an ultrasonic bone-cutting device in adult spinal deformity: a safety and reproducibility study. Shafa Orthop. J. 3(3), 2016.Google Scholar
  10. 10.
    Huang, Y., S. Chen, and J. Tang. Analyses of rotating disc cutting of wood. Taiwan J. Sci. 18:263–271, 2003.Google Scholar
  11. 11.
    Kazim, S. F., S. A. Enam, and M. S. Shamim. Possible detrimental effects of neurosurgical irrigation fluids on neural tissue: an evidence based analysis of various irrigants used in contemporary neurosurgical practice. Int. J. Surg. 8:586–590, 2010.CrossRefGoogle Scholar
  12. 12.
    Khambay, B. S., and A. D. Walmsley. Investigations into the use of an ultrasonic chisel to cut bone. Part 1. Forces applied by clinicians. J. Dent. 28:31–37, 2000.CrossRefGoogle Scholar
  13. 13.
    Leclercq, P., C. Zenati, S. Amr, and D. M. Dohan. Ultrasonic bone cut part 1: state-of-the-art technologies and common applications. J. Oral Maxillofac. Surg. 66:177–182, 2008.CrossRefGoogle Scholar
  14. 14.
    Li, X., W. Zhu, J. Wang, and Y. Deng. Optimization of bone drilling process based on finite element analysis. Appl. Therm. Eng. 108:211–220, 2016.CrossRefGoogle Scholar
  15. 15.
    Mitrofanov, A. V., V. I. Babitsky, and V. V. Silberschmidt. Finite element analysis of ultrasonically assisted turning of Inconel 718. J. Mater. Process. Technol. 153–154:233–239, 2004.CrossRefGoogle Scholar
  16. 16.
    Mitrofanov, A. V., V. I. Babitsky, and V. V. Silberschmidt. Thermomechanical finite element simulations of ultrasonically assisted turning. Comput. Mater. Sci. 32:463–471, 2005.CrossRefGoogle Scholar
  17. 17.
    Patil, S., S. Joshi, A. Tewari, and S. S. Joshi. Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V. Ultrasonics 54:694–705, 2014.CrossRefGoogle Scholar
  18. 18.
    Plaskos, C., A. J. Hodgson, K. Inkpen, and R. W. McGraw. Bone cutting errors in total knee arthroplasty. J. Arthroplasty 17:698–705, 2002.CrossRefGoogle Scholar
  19. 19.
    Rashad, A., A. Kaiser, N. Prochnow, I. Schmitz, E. Hoffmann, and P. Maurer. Heat production during different ultrasonic and conventional osteotomy preparations for dental implants. Clin. Oral Implants Res. 22:1361–1365, 2011.CrossRefGoogle Scholar
  20. 20.
    Reilly, D. T., and A. H. Burstein. The mechanical properties of cortical bone. JBJS 56:1001–1022, 1974.CrossRefGoogle Scholar
  21. 21.
    Sakuma, I., K. Mukaiyama, I. Iordachita, K. Matsumiya, E. Kobayashi, and H. Yano. A bone cutting device for rotational acetabular osteotomy (RAO) with a curved oscillating saw. Int. Congr. Ser. 1268:632–637, 2004.CrossRefGoogle Scholar
  22. 22.
    Santiuste, C., M. Rodríguez-Millán, E. Giner, and H. Miguélez. The influence of anisotropy in numerical modeling of orthogonal cutting of cortical bone. Compos. Struct. 116:423–431, 2014.CrossRefGoogle Scholar
  23. 23.
    Shamoto, E., and T. Moriwaki. Study on elliptical vibration cutting. CIRP Ann. Manuf. Technol. 43:35–38, 1994.CrossRefGoogle Scholar
  24. 24.
    Shu, L., and N. Sugita, Analysis of fracture, force, and temperature in orthogonal elliptical vibration-assisted bone cutting. J. Mech. Behav. Biomed. Mater. 103:103599, 2020.CrossRefGoogle Scholar
  25. 25.
    Shu, L., N. Sugita, M. Oshima, and M. Mitsuishi. Design and experimental force analysis of a novel elliptical vibration assisted orthopedic oscillating saw. Med. Eng. Phys. 54:22–31, 2018.CrossRefGoogle Scholar
  26. 26.
    Stübinger, S., C. Landes, O. Seitz, H. F. Zeilhofer, and R. Sader. Ultraschallbasiertes knochenschneiden in der oralchirurgie: eine übersicht anhand von 60 patientenfällen. Ultraschall der Medizin 29:66–71, 2008.CrossRefGoogle Scholar
  27. 27.
    Sugita, N., L. Shu, T. Shimada, M. Oshima, T. Kizaki, and M. Mitsuishi. Novel surgical machining via an impact cutting method based on fracture analysis with a discontinuum bone model. CIRP Ann. Manuf. Technol. 66:65–68, 2017.CrossRefGoogle Scholar
  28. 28.
    Wang, Y., M. Cao, X. Zhao, G. Zhu, C. McClean, Y. Zhao, and Y. Fan. Experimental investigations and finite element simulation of cutting heat in vibrational and conventional drilling of cortical bone. Med. Eng. Phys. 36:1408–1415, 2014.CrossRefGoogle Scholar
  29. 29.
    Zhang, X., A. Senthil Kumar, M. Rahman, C. Nath, and K. Liu. An analytical force model for orthogonal elliptical vibration cutting technique. J. Manuf. Process. 14:378–387, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2020

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of EngineeringThe University of TokyoTokyoJapan

Personalised recommendations