Advertisement

An Integrated In Vitro–In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures

  • Daniele Poli
  • Giorgio Mattei
  • Nadia Ucciferri
  • Arti AhluwaliaEmail author
Original Article
  • 70 Downloads

Abstract

Potential human and environmental hazards resulting from the exposure of living organisms to silver nanoparticles (Ag NPs) have been the subject of intensive discussion in the last decade. Despite the growing use of Ag NPs in biomedical applications, a quantification of the toxic effects as a function of the total silver mass reaching cells (namely, target cell dose) is still needed. To provide a more accurate dose-response analysis, we propose a novel integrated approach combining well-established computational and experimental methodologies. We first used a particokinetic model (ISD3) for providing experimental validation of computed Ag NP sedimentation in static-cuvette experiments. After validation, ISD3 was employed to predict the total mass of silver reaching human endothelial cells and hepatocytes cultured in 96 well plates. Cell viability measured after 24 h of culture was then related to this target cell dose. Our results show that the dose perceived by the cell monolayer after 24 h of exposure is around 85% lower than the administered nominal media concentration. Therefore, accurate dosimetry considering particle characteristics and experimental conditions (e.g., time, size and shape of wells) should be employed for better interpreting effects induced by the amount of silver reaching cells.

Keywords

Particokinetic model Diffusion Dissolution Sedimentation Ag nanoparticles 

Notes

Acknowledgments

The work leading to this paper has received funding from the European Union’s H2020 research and innovation programme under Grant Agreement No. 760813 (PATROLS).

Author Contributions

DP analyzed the data. NU performed experiments. DP, GM and AA wrote the paper and interpreted the data. DP and AA edited and prepared the final layout. All authors gave final approval of the paper.

Disclosure

The authors have no relevant interests to disclose.

Data Availability

Data are available from the corresponding author upon reasonable request.

Supplementary material

10439_2020_2449_MOESM1_ESM.pdf (261 kb)
Supplementary material (PDF 258 kb)

References

  1. 1.
    AshaRani, P. V., G. Low Kah Mun, M. P. Hande, and S. Valiyaveettil. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290, 2009.PubMedCrossRefGoogle Scholar
  2. 2.
    Beer, C., R. Foldbjerg, Y. Hayashi, D. S. Sutherland, and H. Autrup. Toxicity of silver nanoparticles—nanoparticle or silver ion? Toxicol. Lett. 208:286–292, 2012.PubMedCrossRefGoogle Scholar
  3. 3.
    Behra, R., L. Sigg, M. J. D. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri-Fink, and B. Rothen-Rutishauser. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J. R. Soc. Interface 10:20130396, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Böhmert, L., L. König, H. Sieg, D. Lichtenstein, N. Paul, A. Braeuning, A. Voigt, and A. Lampen. In vitro nanoparticle dosimetry for adherent growing cell monolayers covering bottom and lateral walls. Part. Fibre Toxicol. 15:42, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bouwmeester, H., J. Poortman, R. J. Peters, E. Wijma, E. Kramer, S. Makama, K. Puspitaninganindita, H. J. P. Marvin, A. A. C. M. Peijnenburg, and P. J. M. Hendriksen. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103, 2011.PubMedCrossRefGoogle Scholar
  6. 6.
    Carlson, C., S. M. Hussain, A. M. Schrand, L. K. Braydich-Stolle, K. L. Hess, R. L. Jones, and J. J. Schlager. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J. Phys. Chem. B 112:13608–13619, 2008.PubMedCrossRefGoogle Scholar
  7. 7.
    Chakraborty, C., A. R. Sharma, G. Sharma, and S.-S. Lee. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J. Nanobiotechnology 14:65, 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chen, N., Z.-M. Song, H. Tang, W.-S. Xi, A. Cao, Y. Liu, and H. Wang. Toxicological effects of Caco-2 cells following short-term and long-term exposure to Ag nanoparticles. Int. J. Mol. Sci. 17:974, 2016.PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Comfort, K. K., E. I. Maurer, L. K. Braydich-Stolle, and S. M. Hussain. Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5:10000–10008, 2011.PubMedCrossRefGoogle Scholar
  10. 10.
    Cronholm, P., H. L. Karlsson, J. Hedberg, T. A. Lowe, L. Winnberg, K. Elihn, I. O. Wallinder, and L. Möller. Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 9:970–982, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    de Faria, A. F., D. S. T. Martinez, S. M. M. Meira, A. C. M. de Moraes, A. Brandelli, A. G. S. Filho, and O. L. Alves. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloids Surf. B Biointerfaces 113:115–124, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    De Loid, G. M., J. M. Cohen, G. Pyrgiotakis, S. V. Pirela, A. Pal, J. Liu, J. Srebric, and P. Demokritou. Advanced computational modeling for in vitro nanomaterial dosimetry. Part. Fibre Toxicol. 12:32, 2015.CrossRefGoogle Scholar
  13. 13.
    Dhakshinamoorthy, V., V. Manickam, and E. Perumal. Neurobehavioural toxicity of iron oxide nanoparticles in mice. Neurotox. Res. 32:187–203, 2017.PubMedCrossRefGoogle Scholar
  14. 14.
    Durán, N., C. P. Silveira, M. Durán, and D. S. T. Martinez. Silver nanoparticle protein corona and toxicity: a mini-review. J. Nanobiotechnology 13:55, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Filipović, N., M. Stevanović, A. Radulović, V. Pavlović, and D. Uskoković. Facile synthesis of poly(ε-caprolactone) micro and nanospheres using different types of polyelectrolytes as stabilizers under ambient and elevated temperature. Compos. Part B Eng. 45:1471–1479, 2013.CrossRefGoogle Scholar
  16. 16.
    Foldbjerg, R., P. Olesen, M. Hougaard, D. A. Dang, H. J. Hoffmann, and H. Autrup. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 190:156–162, 2009.PubMedCrossRefGoogle Scholar
  17. 17.
    Ge, L., Q. Li, M. Wang, J. Ouyang, X. Li, and M. M. Q. Xing. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomed. 9:2399–2407, 2014.Google Scholar
  18. 18.
    Hsiao, I.-L., Y.-K. Hsieh, C.-F. Wang, I.-C. Chen, and Y.-J. Huang. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 49:3813–3821, 2015.PubMedCrossRefGoogle Scholar
  19. 19.
    Kawata, K., M. Osawa, and S. Okabe. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ. Sci. Technol. 43:6046–6051, 2009.PubMedCrossRefGoogle Scholar
  20. 20.
    Kermanizadeh, A., B. K. Gaiser, G. R. Hutchison, and V. Stone. An in vitro liver model—assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part. Fibre Toxicol. 9:28, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Kermanizadeh, A., I. Gosens, L. MacCalman, H. Johnston, P. H. Danielsen, N. R. Jacobsen, A.-G. Lenz, T. Fernandes, R. P. F. Schins, F. R. Cassee, H. Wallin, W. Kreyling, T. Stoeger, S. Loft, P. Møller, L. Tran, and V. Stone. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health—ENPRA Project—the highlights, limitations, and current and future challenges. J. Toxicol. Environ. Heal. Part B 19:1–28, 2016.CrossRefGoogle Scholar
  22. 22.
    Kermanizadeh, A., M. Roursgaard, S. Messner, P. Gunness, J. M. Kelm, P. Møller, V. Stone, and S. Loft. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part. Fibre Toxicol. 11:56, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Kermanizadeh, A., S. Vranic, S. Boland, K. Moreau, A. Baeza-Squiban, B. K. Gaiser, L. A. Andrzejczuk, and V. Stone. An in vitroassessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 14:96, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Kim, S., J. E. Choi, J. Choi, K.-H. Chung, K. Park, J. Yi, and D.-Y. Ryu. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. Vitr. 23:1076–1084, 2009.CrossRefGoogle Scholar
  25. 25.
    Klein, C. L., S. Comero, B. Stahlmecke, J. Romazanov, T. A. J. Kuhlbusch, E. V Doren, P. J. D. Temmerman, J. Mast, P. Wick, and H. Krug. NM-series of representative manufactured nanomaterials. NM-300 silver. characterisation, stability, homogeneity. JRC Scientific and Technical Reports 2011. Google Sch. 2013.Google Scholar
  26. 26.
    Le, Q. H., and A. T. Le. Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv. Nat. Sci. Nanosci. Nanotechnol. 4:33001, 2013.CrossRefGoogle Scholar
  27. 27.
    Li, Y., Y. Zhang, and B. Yan. Nanotoxicity overview: nano-threat to susceptible populations. Int. J. Mol. Sci. 15:3671–3697, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu, R., H. H. Liu, Z. Ji, C. H. Chang, T. Xia, A. E. Nel, and Y. Cohen. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model. ACS Nano 9:9303–9313, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mattei, G., C. Magliaro, S. Giusti, S. D. Ramachandran, S. Heinz, J. Braspenning, and A. Ahluwalia. On the adhesion-cohesion balance and oxygen consumption characteristics of liver organoids. PLoS ONE 12:e0173206, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    McShan, D., P. C. Ray, and H. Yu. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 22:116–127, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Morris, V. J. Emerging roles of engineered nanomaterials in the food industry. Trends Biotechnol. 29:509–516, 2011.PubMedCrossRefGoogle Scholar
  32. 32.
    Mukherjee, D., B. F. Leo, S. G. Royce, A. E. Porter, M. P. Ryan, S. Schwander, K. F. Chung, T. D. Tetley, J. Zhang, and P. G. Georgopoulos. Modeling physicochemical interactions affecting in vitro cellular dosimetry of engineered nanomaterials: application to nanosilver. J. Nanoparticle Res. 16:2616, 2014.CrossRefGoogle Scholar
  33. 33.
    Oomen, G. A., A. E. Bleeker, M. P. Bos, F. van Broekhuizen, S. Gottardo, M. Groenewold, D. Hristozov, K. Hund-Rinke, M.-A. Irfan, A. Marcomini, J. W. Peijnenburg, K. Rasmussen, S. A. Jiménez, J. J. Scott-Fordsmand, M. van Tongeren, K. Wiench, W. Wohlleben, and R. Landsiedel. Grouping and read-across approaches for risk assessment of nanomaterials. 12:13415–13434, 2015.Google Scholar
  34. 34.
    Park, M. V. D. Z., A. M. Neigh, J. P. Vermeulen, L. J. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, H. van Loveren, and W. H. de Jong. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32:9810–9817, 2011.PubMedCrossRefGoogle Scholar
  35. 35.
    Rahman, M. F., J. Wang, T. A. Patterson, U. T. Saini, B. L. Robinson, G. D. Newport, R. C. Murdock, J. J. Schlager, S. M. Hussain, and S. F. Ali. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 187:15–21, 2009.PubMedCrossRefGoogle Scholar
  36. 36.
    Rai, M., K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero. Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98:1951–1961, 2014.PubMedCrossRefGoogle Scholar
  37. 37.
    Smith, J. N., D. G. Thomas, H. Jolley, V. K. Kodali, M. H. Littke, P. Munusamy, D. R. Baer, M. J. Gaffrey, B. D. Thrall, and J. G. Teeguarden. All that is silver is not toxic: silver ion and particle kinetics reveals the role of silver ion aging and dosimetry on the toxicity of silver nanoparticles. Part. Fibre Toxicol. 15:47, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sohal, I. S., K. S. O’Fallon, P. Gaines, P. Demokritou, and D. Bello. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part. Fibre Toxicol. 15:29, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Stevanović, M., B. Kovačević, J. Petković, M. Filipič, and D. Uskoković. Effect of poly-α, γ, l-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. Int. J. Nanomed. 6:2837–2847, 2011.CrossRefGoogle Scholar
  40. 40.
    Sun, J., Q. Zhang, Z. Wang, and B. Yan. Effects of nanotoxicity on female reproductivity and fetal development in animal models. Int. J. Mol. Sci. 14:9319–9337, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Theodorou, I. G., K. H. Müller, S. Chen, A. E. Goode, V. Yufit, M. P. Ryan, and A. E. Porter. Silver nanowire particle reactivity with human monocyte-derived macrophage cells: intracellular availability of silver governs their cytotoxicity. ACS Biomater. Sci. Eng. 3:2336–2347, 2017.CrossRefGoogle Scholar
  42. 42.
    Thomas, D. G., J. N. Smith, B. D. Thrall, D. R. Baer, H. Jolley, P. Munusamy, V. Kodali, P. Demokritou, J. Cohen, and J. G. Teeguarden. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Part. Fibre Toxicol. 15:6, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tiwari, D. K., T. Jin, and J. Behari. Dose-dependent in-vivo toxicity assessment of silver nanoparticle in Wistar rats. Toxicol. Mech. Methods 21:13–24, 2011.PubMedCrossRefGoogle Scholar
  44. 44.
    Tlili, A., J. Jabiol, R. Behra, C. Gil-Allué, and M. O. Gessner. Chronic exposure effects of silver nanoparticles on stream microbial decomposer communities and ecosystem functions. Environ. Sci. Technol. 51:2447–2455, 2017.PubMedCrossRefGoogle Scholar
  45. 45.
    Ucciferri, N., E.-M. Collnot, B. K. Gaiser, A. Tirella, V. Stone, C. Domenici, C.-M. Lehr, and A. Ahluwalia. In vitro toxicological screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Nanotoxicology 8:697–708, 2014.PubMedCrossRefGoogle Scholar
  46. 46.
    Vibe, C. B., F. Fenaroli, D. Pires, S. R. Wilson, V. Bogoeva, R. Kalluru, M. Speth, E. Anes, G. Griffiths, and J. Hildahl. Thioridazine in PLGA nanoparticles reduces toxicity and improves rifampicin therapy against mycobacterial infection in zebrafish. Nanotoxicology 10:680–688, 2016.PubMedCrossRefGoogle Scholar
  47. 47.
    Vinci, B., D. Cavallone, G. Vozzi, D. Mazzei, C. Domenici, M. Brunetto, and A. Ahluwalia. In vitro liver model using microfabricated scaffolds in a modular bioreactor. Biotechnol. J. 5:232–241, 2010.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang, Y., W. G. Aker, H. Hwang, C. G. Yedjou, H. Yu, and P. B. Tchounwou. A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci. Total Environ. 409:4753–4762, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Wang, X., Z. Ji, C. H. Chang, H. Zhang, M. Wang, Y.-P. Liao, S. Lin, H. Meng, R. Li, B. Sun, L. Van Winkle, K. E. Pinkerton, J. I. Zink, T. Xia, and A. E. Nel. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10:385–398, 2014.PubMedCrossRefGoogle Scholar
  50. 50.
    Williams, K. M., K. Gokulan, C. E. Cerniglia, and S. Khare. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J. Nanobiotechnol. 14:62, 2016.CrossRefGoogle Scholar
  51. 51.
    Wu, Y.-L., N. Putcha, K. W. Ng, D. T. Leong, C. T. Lim, S. C. J. Loo, and X. Chen. Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc. Chem. Res. 46:782–791, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Wu, T., and M. Tang. Review of the effects of manufactured nanoparticles on mammalian target organs. J. Appl. Toxicol. 38:25–40, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yang, C.-H., L.-S. Wang, S.-Y. Chen, M.-C. Huang, Y.-H. Li, Y.-C. Lin, P.-F. Chen, J.-F. Shaw, and K.-S. Huang. Microfluidic assisted synthesis of silver nanoparticle–chitosan composite microparticles for antibacterial applications. Int. J. Pharm. 510:493–500, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zhang, Y. Cell toxicity mechanism and biomarker. Clin. Transl. Med. 7:34, 2018.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2020

Authors and Affiliations

  1. 1.Research Center E. PiaggioUniversity of PisaPisaItaly
  2. 2.Department of Information EngineeringUniversity of PisaPisaItaly

Personalised recommendations