Stem Cell Mechanosensation on Gelatin Methacryloyl (GelMA) Stiffness Gradient Hydrogels

  • Claire Kim
  • Jennifer L. Young
  • Andrew W. Holle
  • Kwanghee Jeong
  • Luke G. Major
  • Ji Hoon Jeong
  • Zachary M. Aman
  • Dong-Wook Han
  • Yongsung Hwang
  • Joachim P. Spatz
  • Yu Suk ChoiEmail author
Original Article


Stiffness gradient hydrogels are a useful platform for studying mechanical interactions between cells and their surrounding environments. Here, we developed linear stiffness gradient hydrogels by controlling the polymerization of gelatin methacryloyl (GelMA) via differential UV penetration with a gradient photomask. Based on previous observations, a stiffness gradient GelMA hydrogel was created ranging from ~ 4 to 13 kPa over 15 mm (0.68 kPa/mm), covering the range of physiological tissue stiffness from fat to muscle, thereby allowing us to study stem cell mechanosensation and differentiation. Adipose-derived stem cells on these gradient hydrogels showed no durotaxis, which allowed for the screening of mechanomarker expression without confounding directed migration effects. In terms of morphological markers, the cell aspect ratio showed a clear positive correlation to the underlying substrate stiffness, while no significant correlation was found in cell size, nuclear size, or nuclear aspect ratio. Conversely, expression of mechanomarkers (i.e., Lamin A, YAP, and MRTFa) all showed a highly significant correlation to stiffness, which could be disrupted via inhibition of non-muscle myosin or Rho/ROCK signalling. Furthermore, we showed that cells plated on stiffer regions became stiffer themselves, and that stem cells showed stiffness-dependent differentiation to fat or muscle as has been previously reported in the literature.


Mechanosensitive Stiffness Gradient Stem cell Differentiation 



This study work was supported by National Health and Medical Research Council Grant PG1098449 (to YSC), Heart Foundation Future Leader Fellowship 101173 (to YSC), Department of Health, Western Australia, Merit awards—Project and fellowship (to YSC), and Universities Australia DAAD German Research Cooperation 5744610 (to YSC, CK, AWH, JLY and JPS).

Author Contributions

CK, LGM and YSC designed and planned the study. JLY, AWH, and JPS performed SEM and pore size analysis. KJ and ZMA performed Raman spectroscopy. JHJ, YH and DWH synthesized GelMA. CK, JLY and YSC drafted the manuscript. YSC provided supervision and funding. All authors discussed the data and contributed to the final version of the manuscript.

Supplementary material

10439_2019_2428_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1217 kb)


  1. 1.
    Berry, M. F., A. J. Engler, Y. J. Woo, T. J. Pirolli, L. T. Bish, V. Jayasankar, K. J. Morine, T. J. Gardner, D. E. Discher, and H. L. Sweeney. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance. Am. J. Physiol.-Heart Circ. Physiol. 290(6):H2196–H2203, 2006.CrossRefGoogle Scholar
  2. 2.
    Caliari, S. R., S. L. Vega, M. Kwon, E. M. Soulas, and J. A. Burdick. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 103:314–323, 2016.CrossRefGoogle Scholar
  3. 3.
    Choi, Y. S., L. G. Vincent, A. R. Lee, M. K. Dobke, and A. J. Engler. Mechanical derivation of functional myotubes from adipose-derived stem cells. Biomaterials 33(8):2482–2491, 2012.CrossRefGoogle Scholar
  4. 4.
    Choi, Y. S., L. G. Vincent, A. R. Lee, K. C. Kretchmer, S. Chirasatitsin, M. K. Dobke, and A. J. Engler. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices. Biomaterials 33(29):6943–6951, 2012.CrossRefGoogle Scholar
  5. 5.
    Colthup, N., L. Daly, and S. Wiberley. Introduction to Infrared and Raman Spectroscopy (3rd ed.). New York: Academic Press, 1990.Google Scholar
  6. 6.
    Cross, L. M., K. Shah, S. Palani, C. W. Peak, and A. K. Gaharwar. Gradient nanocomposite hydrogels for interface tissue engineering. Nanomedicine 14(7):2465–2474, 2018.CrossRefGoogle Scholar
  7. 7.
    Discher, D. E., P. Janmey, and Y. L. Wang. Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143, 2005.CrossRefGoogle Scholar
  8. 8.
    Dupont, S., L. Morsut, M. Aragona, E. Enzo, S. Giulitti, M. Cordenonsi, F. Zanconato, J. Le Digabel, M. Forcato, S. Bicciato, N. Elvassore, and S. Piccolo. Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183, 2011.CrossRefGoogle Scholar
  9. 9.
    Engler, A. J., S. Sen, H. L. Sweeney, and D. E. Discher. Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689, 2006.CrossRefGoogle Scholar
  10. 10.
    Hadden, W. J., J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA 114(22):5647–5652, 2017.CrossRefGoogle Scholar
  11. 11.
    Happe, C. L., K. P. Tenerelli, A. K. Gromova, F. Kolb, and A. J. Engler. Mechanically patterned neuromuscular junctions-in-a-dish have improved functional maturation. Mol. Biol. Cell 28(14):1950–1958, 2017.CrossRefGoogle Scholar
  12. 12.
    Hartman, C. D., B. C. Isenberg, S. G. Chua, and J. Y. Wong. Vascular smooth muscle cell durotaxis depends on extracellular matrix composition. Proc. Natl. Acad. Sci. USA 113(40):11190–11195, 2016.CrossRefGoogle Scholar
  13. 13.
    Janko, M., A. Zink, A. Gigler, W. Heckl, and R. Stark. Nanostructure and mechanics of mummified type I collagen from the 5300-year-old tyrolean Iceman. Proc. R. Soc. B 277(1692):2301–2309, 2010.CrossRefGoogle Scholar
  14. 14.
    Kang, H., Y. V. Shih, Y. Hwang, C. Wen, V. Rao, T. Seo, and S. Varghese. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 10(12):4961–4970, 2014.CrossRefGoogle Scholar
  15. 15.
    Kloxin, A. M., J. A. Benton, and K. S. Anseth. In situ elasticity modulation with dynamic substrates to direct cell phenotype. Biomaterials 31(1):1–8, 2010.CrossRefGoogle Scholar
  16. 16.
    Kovacs, M., J. Toth, C. Hetenyi, A. Malnasi-Csizmadia, and J. R. Sellers. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279(34):35557–35563, 2004.CrossRefGoogle Scholar
  17. 17.
    Kumper, S., and C. J. Marshall. ROCK-driven actomyosin contractility induces tissue stiffness and tumor growth. Cancer Cell 19(6):695–697, 2011.CrossRefGoogle Scholar
  18. 18.
    Lee, H. P., R. Stowers, and O. Chaudhuri. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nat. Commun. 10(1):529, 2019.CrossRefGoogle Scholar
  19. 19.
    Leijten, J., J. Seo, K. Yue, G. T. Santiago, A. Tamayol, G. U. Ruiz-Esparza, S. R. Shin, R. Sharifi, I. Noshadi, M. M. Alvarez, Y. S. Zhang, and A. Khademhosseini. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. 119:1–35, 2017.CrossRefGoogle Scholar
  20. 20.
    Major, L. G., A. W. Holle, J. L. Young, M. S. Hepburn, K. Jeong, I. L. Chin, R. W. Sanderson, J. H. Jeong, Z. M. Aman, B. F. Kennedy, Y. Hwang, D. W. Han, H. W. Park, K. L. Guan, J. P. Spatz, and Y. S. Choi. Volume adaptation controls stem cell mechanotransduction. ACS Appl. Mater. Interfaces, 2019.Google Scholar
  21. 21.
    Miralles, F., G. Posern, A. I. Zaromytidou, and R. Treisman. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342, 2003.CrossRefGoogle Scholar
  22. 22.
    Nardone, G., J. Oliver-De La Cruz, J. Vrbsky, C. Martini, J. Pribyl, P. Skladal, M. Pesl, G. Caluori, S. Pagliari, F. Martino, Z. Maceckova, M. Hajduch, A. Sanz-Garcia, N. M. Pugno, G. B. Stokin, and G. Forte. YAP regulates cell mechanics by controlling focal adhesion assembly. Nat. Commun. 8:15321, 2017.CrossRefGoogle Scholar
  23. 23.
    O’Connell, C. D., B. Zhang, C. Onofrillo, S. Duchi, R. Blanchard, A. Quigley, J. Bourke, S. Gambhir, R. Kapsa, C. Di Bella, P. Choong, and G. G. Wallace. Tailoring the mechanical properties of gelatin methacryloyl hydrogels through manipulation of the photocrosslinking conditions. Soft Matter 14(11):2142–2151, 2018.CrossRefGoogle Scholar
  24. 24.
    Piraino, F., G. Camci-Unal, M. J. Hancock, M. Rasponi, and A. Khademhosseini. Multi-gradient hydrogels produced layer by layer with capillary flow and crosslinking in open microchannels. Lab Chip 12(3):659–661, 2012.CrossRefGoogle Scholar
  25. 25.
    Reilly, G. C., and A. J. Engler. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 43(1):55–62, 2010.CrossRefGoogle Scholar
  26. 26.
    Stiles, P., J. Dieringer, and N. Shah. Surface-enhanced raman spectroscopy. Annu. Rev. Anal. Chem. 1:601–626, 2008.CrossRefGoogle Scholar
  27. 27.
    Swift, J., I. L. Ivanovska, A. Buxboim, T. Harada, P. C. Dingal, J. Pinter, J. D. Pajerowski, K. R. Spinler, J. W. Shin, M. Tewari, F. Rehfeldt, D. W. Speicher, and D. E. Discher. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341(6149):1240104, 2013.CrossRefGoogle Scholar
  28. 28.
    Tse, J. R., and A. J. Engler. Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1):e15978, 2011.CrossRefGoogle Scholar
  29. 29.
    Vincent, L. G., Y. S. Choi, B. Alonso-Latorre, J. C. del Alamo, and A. J. Engler. Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol. J. 8(4):472–484, 2013.CrossRefGoogle Scholar
  30. 30.
    Yu, O. M., S. Miyamoto, and J. H. Brown. Myocardin-related transcription factor A and Yes-associated protein exert dual control in G protein-coupled receptor- and RhoA-mediated transcriptional regulation and cell proliferation. Mol. Cell. Biol. 36(1):39–49, 2015.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Yu, O. M., S. Miyamoto, and J. H. Brown. Myocardin-related transcription factor A and Yes-associated protein exert dual control in G protein-coupled receptor- and RhoA-mediated transcriptional regulation and cell proliferation. Mol. Cell. Biol. 36(1):39–49, 2016.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Claire Kim
    • 1
  • Jennifer L. Young
    • 2
    • 3
  • Andrew W. Holle
    • 2
    • 3
  • Kwanghee Jeong
    • 4
  • Luke G. Major
    • 1
  • Ji Hoon Jeong
    • 5
  • Zachary M. Aman
    • 4
  • Dong-Wook Han
    • 6
  • Yongsung Hwang
    • 5
  • Joachim P. Spatz
    • 2
    • 3
  • Yu Suk Choi
    • 1
    Email author
  1. 1.School of Human SciencesThe University of Western AustraliaCrawleyAustralia
  2. 2.Department of Cellular BiophysicsMax Planck Institute for Medical ResearchHeidelbergGermany
  3. 3.Department of Biophysical ChemistryUniversity of HeidelbergHeidelbergGermany
  4. 4.Fluid Science and Resources, Department of Chemical Engineering, School of EngineeringUniversity of Western AustraliaPerthAustralia
  5. 5.Soonchunhyang Institute of Medi-bio ScienceSoonchunhyang UniversityCheonan-siKorea
  6. 6.Department of CognoMechatronics Engineering, College of Nanoscience & NanotechnologyPusan National UniversityBusanKorea

Personalised recommendations