Advertisement

3D Printing in Medicine for Preoperative Surgical Planning: A Review

  • A. Tejo-OteroEmail author
  • I. Buj-Corral
  • F. Fenollosa-Artés
Review
  • 110 Downloads

Abstract

The aim of this paper is to review the recent evolution of additive manufacturing (AM) within the medical field of preoperative surgical planning. The discussion begins with an overview of the different techniques, pointing out their advantages and disadvantages as well as an in-depth comparison of different characteristics of the printed parts. Then, the state-of-the-art with respect to preoperative surgical planning is presented. On the one hand, different surgical planning prototypes manufactured by several AM technologies are described. On the other hand, materials used for mimicking different living tissues are explored by focusing on the material properties: elastic modulus, hardness, etc. As a result, doctors can practice before performing surgery and thereby reduce the time needed for the operation. The subject of patient education is also introduced. A thorough review of the process that is required to obtain 3D printed surgical planning prototypes, which is based on different stages, is then carried out. Finally, the ethical issues associated with 3D printing in medicine are discussed, along with its future perspectives. Overall, this is important for improving the outcome of the surgery, since doctors will be able to visualize the affected organs and even to practice surgery before performing it.

Keywords

Additive manufacturing 3D printing Preoperative Surgical planning Biomaterials Bioengineering 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Abouna, G. M. Organ shortage crisis: problems and possible solutions. Transplant. Proc. 40:34–38, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Adams, F., T. Qiu, A. Mark, B. Fritz, L. Kramer, D. Schlager, U. Wetterauer, A. Miernik, and P. Fischer. Soft 3D-printed phantom of the human kidney with collecting system. Ann. Biomed. Eng. 45:963–972, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Agarwal, A., N. Borley, and G. McLatchie. Oxford Handbook of Operative Surgery. Oxford: Oxford University Press, 2017.CrossRefGoogle Scholar
  4. 4.
    Akhtar, M. F., M. Hanif, and N. M. Ranjha. Methods of synthesis of hydrogels. A review. Saudi Pharm. J. 24:554–559, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Anderson, J. R., W. L. Thompson, A. K. Alkattan, O. Diaz, R. Klucznik, Y. J. Zhang, G. W. Britz, R. G. Grossman, and C. Karmonik. Three-dimensional printing of anatomically accurate, patient specific intracranial aneurysm models. J. Neurointerv. Surg. 8:517–520, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Andre, J. C., A. Le Mehaute, and O. De Witte. Dispositif pour realiser un module de piece industrielle., 1984. http://bases-brevets.inpi.fr/fr/document/FR2567668/publications.html.
  7. 7.
    Arai, Y., E. Tammisalo, K. Iwai, K. Hashimoto, and K. Shinoda. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofacial Radiol. 28:245–248, 1999.CrossRefGoogle Scholar
  8. 8.
    Ashby, M. F., L. J. Gibson, U. Wegst, and R. Olive. The mechanical properties of natural materials. Proc. R. Soc. Lond. A 450:123–140, 1995.CrossRefGoogle Scholar
  9. 9.
    ASTM. D2240 Rubber Property—Durometer Hardness. West Conshohocken: ASTM, pp. 1–13, 2015.  https://doi.org/10.1520/d2240-15.2.CrossRefGoogle Scholar
  10. 10.
    ASTM, I. ASTM52900-15 Standard Terminology for Additive Manufacturing—General Principles—Terminology. West Conshohocken, PA: ASTM International, 2015.Google Scholar
  11. 11.
    Attaran, M. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 60:677–688, 2017.CrossRefGoogle Scholar
  12. 12.
    Azari, A., and S. Nikzad. The evolution of rapid prototyping in dentistry: A review. Rapid Prototyp. J. 15:216–225, 2009.CrossRefGoogle Scholar
  13. 13.
    Banks, D. P., C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti. Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer. Appl. Phys. Lett. 89:10–12, 2006.CrossRefGoogle Scholar
  14. 14.
    Barghout, L., and L. Lee. U.S. Patent No. 10/618.543. World Neurosurg. 117:99, 2004.Google Scholar
  15. 15.
    Berman, B. 3-D printing: the new industrial revolution. Bus. Horiz. 55:155–162, 2012.CrossRefGoogle Scholar
  16. 16.
    Bernhard, J. C., S. Isotani, T. Matsugasumi, V. Duddalwar, A. J. Hung, E. Suer, E. Baco, R. Satkunasivam, H. Djaladat, C. Metcalfe, B. Hu, K. Wong, D. Park, M. Nguyen, D. Hwang, S. T. Bazargani, A. L. de Castro Abreu, M. Aron, O. Ukimura, and I. S. Gill. Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J. Urol. 34:337–345, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Biglino, G., C. Capelli, J. Wray, S. Schievano, L. K. Leaver, S. Khambadkone, A. Giardini, G. Derrick, A. Jones, and A. M. Taylor. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability. BMJ Open 5:e007165, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Biglino, G., D. Koniordou, M. Gasparini, C. Capelli, L. K. Leaver, S. Khambadkone, S. Schievano, A. M. Taylor, and J. Wray. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations. Pediatr. Cardiol. 38:813–818, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bohandy, J., B. F. Kim, and F. J. Adrian. Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60:1538–1539, 1986.CrossRefGoogle Scholar
  21. 21.
    Bose, S., S. Vahabzadeh, and A. Bandyopadhyay. Bone tissue engineering using 3D printing. Mater. Today 16:496–504, 2013.CrossRefGoogle Scholar
  22. 22.
    Buj-Corral, I., A. Bagheri, and O. Petit-Rojo. 3D printing of porous scaffolds with controlled porosity and pore size values. Materials (Basel). 11:1–18, 2018.CrossRefGoogle Scholar
  23. 23.
    Chang, R., J. Nam, and W. Sun. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng. Part A 14:41–48, 2008.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Chelu, R. G., D. van der Linder, and K. Nieman. Cardiovascular imaging in aneurysm-osteoarthritis syndrome. Aneurysms Osteoarthritis Syndr. 5:103–114, 2017.CrossRefGoogle Scholar
  25. 25.
    Chen, Z., Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 39:661–687, 2019.CrossRefGoogle Scholar
  26. 26.
    Chikwe, J., A. C. de Souza, and J. R. Pepper. No time to train the surgeons. BMJ 328:418–419, 2004.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chockalingam, K., N. Jawahar, U. Chandrasekar, and K. N. Ramanathan. Establishment of process model for part strength in stereolithography. J. Mater. Process. Technol. 208:348–365, 2008.CrossRefGoogle Scholar
  28. 28.
    Christensen, A. M., S. M. Humphries, K. Y. C. Goh, and D. Swift. Advanced “tactile” medical imaging for separation surgeries of conjoined twins. Child’s Nerv. Syst. 20:547–553, 2004.CrossRefGoogle Scholar
  29. 29.
    Colton, J., B. Blair, and B. Blair. Experimental study of post-build cure of stereolithography polymers for injection. Rapid Prototyp J. 5:1–8, 2006.Google Scholar
  30. 30.
    Comb, J. FDM technology process improvements. Proc. Solid. pp. 42–49, 1994. http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA290949#page=49.
  31. 31.
    Cosma, C., U. T. Cluj-napoca, C. Moldovan, U. T. Cluj-napoca, R. I. Campbell, and A. Cosma. Theoretical analysis and practical case studies of powder-based additive manufacturing. Acta Technica Napocensis 61:401–408, 2018.Google Scholar
  32. 32.
    Crump, S. S. U.S. Patent No. 5121329. 1992.Google Scholar
  33. 33.
    Cui, X., T. Boland, D. DD’Lima, and M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 6:149–155, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dababneh, A. B., and I. T. Ozbolat. Bioprinting technology: a current state-of-the-art review. J. Manuf. Sci. Eng. 136:061016, 2014.CrossRefGoogle Scholar
  35. 35.
    Dankelman, J., J. J. van den Dobbelsteen, L. H. Pluymen, T. L. de Jong, D. J. van Gerwen, and G.-J. Kleinrensink. PVA matches human liver in needle-tissue interaction. J. Mech. Behav. Biomed. Mater. 69:223–228, 2017.PubMedCrossRefGoogle Scholar
  36. 36.
    Davison, G. C. In reply: behaviour therapy. Br. J. Psychiatry 112:211–212, 1966.CrossRefGoogle Scholar
  37. 37.
    de Ciurana, Q., Á. Fernández, and M. Monzón. Guía de tecnologías de rapid manufacturing. Girona: Documenta Universitaria, 2006.Google Scholar
  38. 38.
    Deckard, C. R. U.S. Patent No. 4863538. 1989.Google Scholar
  39. 39.
    Derakhshanfar, S., R. Mbeleck, K. Xu, X. Zhang, W. Zhong, and M. Xing. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact. Mater. 3:144–156, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 101:1255–1264, 2013.CrossRefGoogle Scholar
  41. 41.
    Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ellis, A., L. Hartley, and N. Hopkinson. Effect of print density on the properties of high speed sintered elastomers. Metall. Mater. Trans. A 46:3883–3886, 2015.CrossRefGoogle Scholar
  43. 43.
    Esteves, R., E. Esteves, N. Onukwuba, and B. Dikici. Determination of surfactant solution viscosities with a rotational viscometer. Undergraduate Res. J. 1(1):2, 2016.Google Scholar
  44. 44.
    Farooqi, K. M., O. Saeed, A. Zaidi, J. Sanz, J. C. Nielsen, D. T. Hsu, and U. P. Jorde. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure. JACC Heart Fail. 4:301–311, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Fenollosa F. Contribució a l’estudi de la impressió 3D per a la fabricació de models per facilitar l’assaig d’operacions quirúrgiques de tumors. Barcelona: Universitat Politècnica de Catalunya, 2019.Google Scholar
  46. 46.
    Ferry, M. P. W., J. Feijen, and D. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.CrossRefGoogle Scholar
  47. 47.
    Feuerhahn, F., A. Schulz, T. Seefeld, and F. Vollertsen. Microstructure and properties of selective laser melted high hardness tool steel. Phys. Procedia 41:843–848, 2013.CrossRefGoogle Scholar
  48. 48.
    Flanagan, C. L., S. J. Hollister, R. M. Schek, S. E. Feinberg, S. Das, J. M. Williams, P. H. Krebsbach, and A. Adewunmi. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Forte, A. E., S. Galvan, F. Manieri, F. Rodriguez y Baena, and D. Dini. A composite hydrogel for brain tissue phantoms. Mater. Des. 112:227–238, 2016.CrossRefGoogle Scholar
  50. 50.
    Franta, I. Elastomers and Rubber Compounding Materials. Amsterdam: Elsevier, p. 607, 1989.Google Scholar
  51. 51.
    Gauvin, R., Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. W. Nichol, and A. Khademhosseini. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography. Biomaterials 33:3824–3834, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Gibson, I., D. Rosen, and B. Stucker. Generalized additive manufacturing process chain. In: Additive Manufacturing Technologies, edited by I. Gibson, D. Rosen, and B. Stucker. New York: Springer, 2014, pp. 43–61.Google Scholar
  53. 53.
    Gilbert, F., C. D. O’Connell, T. Mladenovska, and S. Dodds. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci. Eng. Ethics 24:73–91, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Gobin, A. S., R. H. Schmedlen, A. T. Tsai, J. L. West, and B. K. Mann. Smooth muscle cell growth in photopolymerized hydrogels with cell adhesive and proteolytically degradable domains: synthetic ECM analogs for tissue engineering. Biomaterials 22:3045–3051, 2002.Google Scholar
  55. 55.
    Gokuldoss, P. K., S. Kolla, and J. Eckert. Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials (Basel) 10:672, 2017.CrossRefGoogle Scholar
  56. 56.
    Gross, B. C., J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem. 86:3240–3253, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Guillotin, B., S. Catros, and F. Guillemot. Laser assisted bio-printing (LAB) of cells and bio-materials based on laser induced forward transfer (LIFT). In: Laser Technology in Biomimetics, edited by V. Schmidt, and M. R. Belegratis. Berlin: Springer, 2013, pp. 193–209.CrossRefGoogle Scholar
  58. 58.
    Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Rémy, L. Bordenave, J. Amédée, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Harsha Vardhan, G., G. H. Charan, P. S. Reddy, and K. S. Kumar. 3D printing: the dawn of a new era in manufacturing. Int. J. Recent Innov. Trends Comput. Commun. 2(8):2321–2376, 2013.Google Scholar
  60. 60.
    Ho, H. C. H., I. Gibson, and W. L. Cheung. Effects of energy density on morphology and properties of selective laser sintered polycarbonate. J. Mater. Process. Technol. 89–90:204–210, 1999.CrossRefGoogle Scholar
  61. 61.
    Hocheng, H., H. Y. Tsai, U. U. Jadhav, K. Y. Wang, and T. C. Lin. Laser surface patterning. Mater. Sci. Mater. Eng. 9:75–113, 2014.Google Scholar
  62. 62.
    Homma, T., N. Kunito, and S. Kamado. Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61:644–647, 2009.CrossRefGoogle Scholar
  63. 63.
    Hospodiuk, M., M. Dey, D. Sosnoski, and I. T. Ozbolat. The bioink: a comprehensive review on bioprintable materials. Biotechnol. Adv. 35:217–239, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Hull, C. W. U.S. Patent No. 4.575.330. 1986.Google Scholar
  65. 65.
    Hull, C. On stereolithography. Virtual Phys. Prototyp. 27:177–177, 2012.CrossRefGoogle Scholar
  66. 66.
    Igami, T., Y. Nakamura, T. Hirose, T. Ebata, Y. Yokoyama, G. Sugawara, T. Mizuno, K. Mori, and M. Nagino. Application of a three-dimensional print of a liver in hepatectomy for small tumors invisible by intraoperative ultrasonography: preliminary experience. World J. Surg. 38:3163–3166, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Irvine, S. A., and S. S. Venkatraman. Bioprinting and differentiation of stem cells. Molecules 21:1188, 2016.PubMedCentralCrossRefGoogle Scholar
  68. 68.
    Ito, K., K. Furuya, Y. Okano, and L. Hamada. Development and characteristics of a biological tissue-equivalent phantom for microwaves. Electron. Commun. Jpn. 84:67–77, 2001.CrossRefGoogle Scholar
  69. 69.
    James, W. J., M. A. Slabbekoorn, W. A. Edgin, and C. K. Hardin. Correction of congenital malar hypoplasia using stereolithography for presurgical planning. J. Oral Maxillofac. Surg. 56:512–517, 1998.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jammalamadaka, U., and K. Tappa. Recent advances in biomaterials for 3D printing and tissue engineering. J. Funct. Biomater. 9:22, 2018.PubMedCentralCrossRefGoogle Scholar
  71. 71.
    Jardini, A. L., M. A. Larosa, C. A. de Carvalho Zavaglia, L. F. Bernardes, C. S. Lambert, P. Kharmandayan, D. Calderoni, and R. Maciel Filho. Customised titanium implant fabricated in additive manufacturing for craniomaxillofacial surgery. Virtual Phys. Prototyp. 9:115–125, 2014.CrossRefGoogle Scholar
  72. 72.
    Kappanayil, M., N. Rao Koneti, R. R. Kannan, B. P. Kottayil, and K. Kumar. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: early experience and proof of concept in a resource-limited environment. Ann. Pediatr. Cardiol. 10:117–125, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kassab, G. S., and M. S. Sacks. Structure-Based Mechanics of Tissues and Organs. New York: Springer, 2016.CrossRefGoogle Scholar
  74. 74.
    Kempen, K., L. Thijs, J. Van Humbeeck, and J. P. Kruth. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys. Procedia 39:439–446, 2012.CrossRefGoogle Scholar
  75. 75.
    Kim, K., A. Yeatts, D. Dean, and J. P. Fisher. Stereolithographic bone scaffold design parameters: osteogenic differentiation and signal expression. Tissue Eng. Part B Rev. 16:523–539, 2010.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kirchmajer, D. M., and R. Gorki. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3D-printing. J. Mater. Chesmitry 3:4105–4117, 2015.Google Scholar
  77. 77.
    Kodama, H. Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer. Rev. Sci. Instrum. 60:677–688, 1981.Google Scholar
  78. 78.
    Kokkinis, D., M. Schaffner, and A. R. Studart. Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6:8643, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Krauel, L., F. Fenollosa, L. Riaza, M. Pérez, X. Tarrado, A. Morales, J. Gomà, and J. Mora. Use of 3D prototypes for complex surgical oncologic cases. World J. Surg. 40:889–894, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Kresz, N., Z. Bor, T. Smausz, D. B. Chrisey, N. Barna, A. Szabó, L. Kolozsvári, B. Hopp, and A. Nógrádi. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 11:1817–1823, 2006.Google Scholar
  81. 81.
    Kruth, J. P., L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, and B. Lauwers. Selective laser melting of iron-based powder. J. Mater. Process. Technol. 149:616–622, 2004.CrossRefGoogle Scholar
  82. 82.
    Kurenov, S. N., C. Ionita, D. Sammons, and T. L. Demmy. Three-dimensional printing to facilitate anatomic study, device development, simulation, and planning in thoracic surgery. J. Thorac. Cardiovasc. Surg. 149:973–979.e1, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kusaka, M., M. Sugimoto, N. Fukami, H. Sasaki, M. Takenaka, T. Anraku, T. Ito, T. Kenmochi, R. Shiroki, and K. Hoshinaga. Initial experience with a tailor-made simulation and navigation program using a 3-D printer model of kidney transplantation surgery. Transplant. Proc. 47:596–599, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Lars, G. W., L. Whal, and Y. Shi-Joon. Magnetic resonance imaging and computer tomography. Paediatr. Cardiol. 18:363–378, 2010.Google Scholar
  85. 85.
    Leary, M., M. Mazur, J. Elambasseril, M. McMillan, T. Chirent, Y. Sun, M. Qian, M. Easton, and M. Brandt. Selective laser melting (SLM) of AlSi12Mg lattice structures. Mater. Des. 98:344–357, 2016.CrossRefGoogle Scholar
  86. 86.
    Leibinger, A., A. E. Forte, Z. Tan, M. J. Oldfield, F. Beyrau, D. Dini, and F. Rodriguez y Baena. Soft tissue phantoms for realistic needle insertion: a comparative study. Ann. Biomed. Eng. 44:2442–2452, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Leong, K. F., S. S. Venkatraman, C. K. Chua, N. Sudarmadji, Y. C. F. Boey, H. Y. Yu, L. P. Tan, and W. Y. Yeong. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater. 6:2028–2034, 2009.PubMedPubMedCentralGoogle Scholar
  88. 88.
    Lewis, J. A., R. G. Nuzzo, L. Mahadevan, A. Sydney Gladman, and E. A. Matsumoto. Biomimetic 4D printing. Nat. Mater. 15:413–418, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Liao, C. Y., W. J. Wu, C. T. Hsieh, H. C. Yang, C. S. Tseng, and S. Hui Hsu. Water/ice as sprayable sacrificial materials in low-temperature 3D printing for biomedical applications. Mater. Des. 160:624–635, 2018.CrossRefGoogle Scholar
  90. 90.
    Linares-Alvelais, J. A. R., J. Obedt Figueroa-Cavazos, C. Chuck-Hernandez, H. R. Siller, C. A. Rodríguez, and J. I. Martínez-López. Hydrostatic high-pressure post-processing of specimens fabricated by DLP, SLA, and FDM: an alternative for the sterilization of polymer-based biomedical devices. Materials (Basel) 11:2540, 2018.CrossRefGoogle Scholar
  91. 91.
    Maeda, K., and T. H. C. Childs. Laser sintering (SLS) of hard metal powders for abrasion resistant coatings. J. Mater. Process. Technol. 149:609–615, 2004.CrossRefGoogle Scholar
  92. 92.
    Manufacturing, A., and F. Format. International Standard ISO/ASTM Specification for Additive Manufacturing File Format (AMF). 2016, 2016.Google Scholar
  93. 93.
    Mariappan, Y. K., K. J. Glaser, and R. L. Ehman. Magnetic resonance elastography: a review. Clin Anat 23:497–511, 2011.CrossRefGoogle Scholar
  94. 94.
    Marro, A., T. Bandukwala, and W. Mak. Three-dimensional printing and medical imaging: a review of the methods and applications. Curr. Probl. Diagn. Radiol. 45:2–9, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mehrali, M., H. S. C. Metselaar, H. Yarmand, N. A. A. Osman, N. Adib Kadri, S. Gharehkhani, and S. F. S. Shirazi. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci. Technol. Adv. Mater. 16:033502, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Mildenberger, P., M. Eichelberg, and E. Martin. Introduction to the DICOM standard. Eur. Radiol. 12:920–927, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mohebi, M. M., and J. R. Evans. A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics. J. Comb. Chem. 4:267–274, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Morvan, S. M. Heterogeneous solids: possible representation schemes. Proc. Solid Free. pp. 187–198, 1999. http://utwired.utexas.edu/lff/symposium/proceedingsArchive/pubs/Manuscripts/1999/1999-022-Morvan.pdf.
  99. 99.
    Mueller, J., K. Shea, and C. Daraio. Mechanical properties of parts fabricated with inkjet 3D printing through efficient experimental design. Mater. Des. 86:902–912, 2015.CrossRefGoogle Scholar
  100. 100.
    Muguruza Blanco, A., L. Krauel, and F. Fenollosa Artés. Development of a patients-specific 3D-printed preoperative planning and training tool, with functionalized internal surfaces, for complex oncologic cases. Rapid Prototyp. J. 25:363–377, 2019.CrossRefGoogle Scholar
  101. 101.
    Murphy, S. V., and A. Atala. 3D bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Naahidi, S., M. Jafari, M. Logan, Y. Wang, Y. Yuan, H. Bae, and P. Chen. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol. Adv. 35:530–544, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Nam, D., R. L. Barrack, and H. G. Potter. What are the advantages and disadvantages of imaging modalities to diagnose wear-related corrosion problems? Clin. Orthop. Relat. Res. 472:3665–3673, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Nizam, A., R. Gopal, N. L. Naing, A. B. Hakim, and A. R. Samsudin. Dimensional accuracy of the skull models produced by rapid prototyping technology using stereolithography apparatus. Arch. Orofac. Sci. 1:60–66, 2006.Google Scholar
  105. 105.
    Noor, N., A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6:1900344, 2019.CrossRefGoogle Scholar
  106. 106.
    Nune, K. C., S. Li, and R. D. K. Misra. Advancements in three-dimensional titanium alloy mesh scaffolds fabricated by electron beam melting for biomedical devices: mechanical and biological aspects. Sci. China Mater. 61:1–20, 2017.Google Scholar
  107. 107.
    Ovsianikov, A., S. Lin, K. Hölzl, L. Tytgat, S. Van Vlierberghe, and L. Gu. Bioink properties before, during and after 3D bioprinting. Biofabrication 8:032002, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Oyen, M. L. Mechanical characterisation of hydrogel materials. Int. Mater. Rev. 59:44–59, 2014.CrossRefGoogle Scholar
  109. 109.
    Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Perez, M. Sterilization of FDM-manufactured parts Mireya 285–296, 2012Google Scholar
  112. 112.
    Perkins, J. D. Techniques to ensure adequate portal flow in the presence of splenorenal shunts. Liver Transplant. 13:767–768, 2007.Google Scholar
  113. 113.
    Polonio-Alcalá, E., M. Rabionet, X. Gallardo, D. Angelats, J. Ciurana, S. Ruiz-Martínez, and T. Puig. PLA electrospun scaffolds for three-dimensional triple-negative breast cancer cell culture. Polymers (Basel) 11:916, 2019.PubMedCentralCrossRefGoogle Scholar
  114. 114.
    Polonio-Alcalá, E., M. Rabionet, A. J. Guerra, M. Yeste, J. Ciurana, and T. Puig. Screening of additive manufactured scaffolds designs for triple negative breast cancer 3D cell culture and stem-like expansion. Int. J. Mol. Sci. 19:3148, 2018.PubMedCentralCrossRefGoogle Scholar
  115. 115.
    Pykett, I. L., J. H. Newhouse, F. S. Buonanno, T. J. Brady, M. R. Goldman, J. P. Kistler, and G. M. Pohost. Principles of nuclear magnetic resonance imaging. Radiology 143:157–168, 1982.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Qi, L., J. C. Kash, V. G. Dugan, B. W. Jagger, Y. Lau, E. C. Crouch, K. L. Hartshorn, and J. K. Taubenberger. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34:331–339, 2013.CrossRefGoogle Scholar
  117. 117.
    Remmers, R., D. Cook, and V. Gervasi. Custom, integrated, pneumatic, rotary actuator for and active ankle-foot orthosis. Solid Free. Fabr. Symp. 816–827, 2010. http://sffsymposium.engr.utexas.edu/Manuscripts/2010/2010-69-Remers.pdf.
  118. 118.
    Rimann, M., E. Bono, H. Annaheim, M. Bleisch, and U. Graf-Hausner. Standardized 3D bioprinting of soft tissue models with human primary cells. J. Lab. Autom. 21:496–509, 2016.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sekhar, A., M. R. Sun, and B. Siewert. A tissue phantom model for training residents in ultrasound-guided liver biopsy. Acad. Radiol. 21:902–908, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Selvamurugan, N., K. Ramasamy, A. Moorthi, M. Swetha, N. Srinivasan, and K. Sahithi. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int. J. Biol. Macromol. 47:1–4, 2010.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Semelka, R. C., D. M. Armao, J. Elias, and W. Huda. Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25:900–909, 2007.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Shaheen, E., A. Alhelwani, E. Van De Casteele, C. Politis, and R. Jacobs. Evaluation of dimensional changes of 3D printed models after sterilization: a pilot study. Open Dent. J. 12:72–79, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Shamoo, A. E., and D. B. Resnik. Responsible Conduct of Research. Oxford: Oxford University Press, 2009.CrossRefGoogle Scholar
  125. 125.
    Shestopaloff, Y. K., and I. F. Sbalzarini. A method for modeling growth of organs and transplants based on the general growth law: application to the liver in dogs and humans. PLoS ONE 9:e99275, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Shiraishi, I., M. Yamagishi, K. Hamaoka, M. Fukuzawa, and T. Yagihara. Simulative operation on congenital heart disease using rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardio Thoracic Surg. 37:302–306, 2010.Google Scholar
  127. 127.
    Simpkins, M. W., R. L. Stewart, R. L. Parkhill, A. L. Stone, A. M. Kachurin, S. K. Williams, C. M. Smith, and W. L. Warren. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 10:1566–1576, 2004.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Singh, D., and D. Thomas. Advances in medical polymer technology towards the panacea of complex 3D tissue and organ manufacture. Am. J. Surg. 217:807–808, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Smith, R. J., M. Hirsch, R. Patel, W. Li, A. T. Clare, and S. D. Sharples. Spatially resolved acoustic spectroscopy for selective laser melting. J. Mater. Process. Technol. 236:93–102, 2016.CrossRefGoogle Scholar
  130. 130.
    Sprawls, P. Physical Principles of Medical Imaging Online. Madison: Medical Physics Publishing, 1985.Google Scholar
  131. 131.
    Sugiyama, T., S. Lama, L. S. Gan, Y. Maddahi, K. Zareinia, and G. R. Sutherland. Forces of tool-tissue interaction to assess surgical skill level. JAMA Surg. 153:234–242, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Takahashi, K., and S. Yamanaka. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tam, M. D., S. D. Laycock, D. G. Bell, and A. Chojnowski. 3-D printout of a DICOM file to aid surgical planning in a 6 year old patient with a large scapular osteochondroma complicating congenital diaphyseal aclasia. J. Radiol. Case Rep. 6:31–37, 2012.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Tan, Z., D. Dini, F. Rodriguez y Baena, and A. E. Forte. Composite hydrogel: a high fidelity soft tissue mimic for surgery. Mater. Des. 160:886–894, 2018.CrossRefGoogle Scholar
  135. 135.
    Tan, C., K. Zhou, W. Ma, B. Attard, P. Zhang, and T. Kuang. Selective laser melting of high-performance pure tungsten: parameter design, densification behavior and mechanical properties. Sci. Technol. Adv. Mater. 19:370–380, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Tang, B., G. B. Hanna, and A. Cuschieri. Analysis of errors enacted by surgical trainees during skills training courses. Surgery 138:14–20, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Thomson, J. A. Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147, 1998.PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Tibbits, S. 4D printing: Multi-material shape change. Archit. Des. 84:116–121, 2014.Google Scholar
  139. 139.
    Tseng, M. L., P. C. Wu, S. Sun, C. M. Chang, W. T. Chen, C. H. Chu, P. L. Chen, L. Zhou, D. W. Huang, T. J. Yen, and D. P. Tsai. Fabrication of multilayer metamaterials by femtosecond laser-induced forward-transfer technique. Laser Photonics Rev. 6:702–707, 2012.CrossRefGoogle Scholar
  140. 140.
    van de Belt, T. H., H. Nijmeijer, D. Grim, L. J. Engelen, R. Vreeken, M. M. van Gelder, and M. ter Laan. Patient-specific actual-size three-dimensional printed models for patient education in glioma treatment: first experiences. World Neurosurg. 117:e99–e105, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Vaneker, T. H. J. The role of design for additive manufacturing in the successful economical introduction of AM. Procedia CIRP 60:181–186, 2017.CrossRefGoogle Scholar
  142. 142.
    Vermeulen, N., G. Haddow, T. Seymour, A. Faulkner-Jones, and W. Shu. 3D bioprint me: A socioethical view of bioprinting human organs and tissues. J. Med. Ethics 43:618–624, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Vijayavenkataraman, S., W. C. Yan, W. F. Lu, C. H. Wang, and J. Y. H. Fuh. 3D bioprinting of tissues and organs for regenerative medicine. Adv. Drug Deliv. Rev. 132:296–332, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Waldman, S. D. Pain Review E-Book. Amsterdam: Elsevier Health Sciences, 2016.Google Scholar
  145. 145.
    Wang, P., H. C. Li, K. G. Prashanth, J. Eckert, and S. Scudino. Selective laser melting of Al–Zn–Mg–Cu: Heat treatment, microstructure and mechanical properties. J. Alloys Compd. 707:287–290, 2017.CrossRefGoogle Scholar
  146. 146.
    Warnke, P. H., T. Douglas, P. Wollny, E. Sherry, M. Steiner, S. Galonska, S. T. Becker, I. N. Springer, J. Wiltfang, and S. Sivananthan. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng. Part C Methods 15:115–124, 2008.CrossRefGoogle Scholar
  147. 147.
    Watson, R. A. A low-cost surgical application of additive fabrication. J. Surg. Educ. 71:14–17, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2:11–18, 2002.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Winder, J. A., and R. J. Bibb. Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 63:245–248, 2005.CrossRefGoogle Scholar
  150. 150.
    Witowski, J. S., M. Pędziwiatr, P. Major, and A. Budzyński. Cost-effective, personalized, 3D-printed liver model for preoperative planning before laparoscopic liver hemihepatectomy for colorectal cancer metastases. Int. J. Comput. Assist. Radiol. Surg. 12:2047–2054, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Wohlers, T. Rapid prototyping & tooling state of the industry: 1998 worldwide progress report. Mater. Technol. 13:174–176, 2016.CrossRefGoogle Scholar
  152. 152.
    Wong, K. V., and A. Hernandez. A review of additive manufacturing. ISRN Mech. Eng. 1–10:2012, 2012.Google Scholar
  153. 153.
    Wurm, G., B. Tomancok, P. Pogady, K. Holl, and J. Trenkler. Cerebrovascular stereolithographic biomodeling for aneurysm surgery: Technical note. J. Neurosurg. 100:139–145, 2004.PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Xu, T., J. Jin, C. Gregory, J. J. Hickman, and T. Boland. Inkjet printing of viable mammalian cells. Biomaterials 26:93–99, 2005.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Xu, T., H. Kincaid, A. Atala, and J. J. Yoo. High-throughput production of single-cell microparticles using an inkjet printing technology. J. Manuf. Sci. Eng. 130:021017, 2008.CrossRefGoogle Scholar
  156. 156.
    Yang, Y., J. Bin Lu, Z. Y. Luo, and D. Wang. Accuracy and density optimization in directly fabricating customized orthodontic production by selective laser melting. Rapid Prototyp. J. 18:482–489, 2012.CrossRefGoogle Scholar
  157. 157.
    Yang, D. H., J. W. Kang, N. Kim, J. K. Song, J. W. Lee, and T. H. Lim. Myocardial 3-dimensional printing for septal myectomy guidance in a patient with obstructive hypertrophic cardiomyopathy. Circulation 132:300–301, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Yang, Y., L. Li, and J. Zhao. Mechanical property modeling of photosensitive liquid resin in stereolithography additive manufacturing: Bridging degree of cure with tensile strength and hardness. Mater. Des. 162:418–428, 2019.CrossRefGoogle Scholar
  159. 159.
    Yang, H., S. Yang, X. Chi, and J. R. Evans. Fine ceramic lattices prepared by extrusion freeforming. J. Biomed. Mater. Res. Part B 79:116–121, 2006.CrossRefGoogle Scholar
  160. 160.
    Yeo, M. G., J. S. Lee, W. Chun, and G. H. Kim. An innovative collagen-based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core-sheath structures for tissue engineering. Biomacromolecules 17:1365–1375, 2016.PubMedCrossRefGoogle Scholar
  161. 161.
    Yu, Y., and I. T. Ozbolat. Tissue strands as “bioink” for scale-up organ printing. 2014 36th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBC 2014 pp. 1428–1431, 2014. https://doi.org/10.1109/embc.2014.6943868.
  162. 162.
    Zein, N. N., I. A. Hanouneh, P. D. Bishop, M. Samaan, B. Eghtesad, C. Quintini, C. Miller, L. Yerian, and R. Klatte. Three-dimensional print of a liver for preoperative planning in living donor liver transplantation. Liver Transplant. 19(12):1304–1310, 2013.CrossRefGoogle Scholar
  163. 163.
    Zhao, Y., Y. Li, S. Mao, W. Sun, and R. Yao. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7:45002, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Centre CIMUniversitat Politècnica de Catalunya (CIM UPC)BarcelonaSpain
  2. 2.Departament of Mechanical Engineering, School of Engineering of Barcelona (ETSEIB)Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations