Advertisement

Relative Surface Velocity of the Tibiofemoral Joint and Its Relation to the Development of Osteoarthritis After Joint Injury

  • Mehdi ShekarforoushEmail author
  • Paris Vakiel
  • Michael Scott
  • Gregory Muench
  • David A. Hart
  • Nigel G. Shrive
Original Article
  • 50 Downloads

Abstract

The relative velocity of the tibiofemoral surfaces during gait before and after partial-ACL and full MCL transection (p-ACL/MCL Tx) was examined in an ovine model (N = 5) and the relation between the variation in the relative sliding velocity component and gross morphological damage was investigated. We defined the in vivo kinematics of the tibiofemoral joints by using an instrumented spatial linkage and then determining the relative velocity components on the reconstructed femoral condyle surfaces. One major finding was that the magnitude of the relative velocity components was relatively high during the initial stance period of the gait and oscillated with a decaying envelope. Interestingly, for most subjects, the highest value of relative sliding velocity occurred during the stance phase, and not swing. The magnitude of the relative velocity components was increased in 3/5 subjects during stance after an injury. For the lateral compartment, there was a significant correlation (p value = 0.005) between the joint gross morphological damage and the increase in the maximum relative sliding velocity during stance. For the medial compartment, there was a trend (p value < 0.1) between the joint gross morphological score and the increase in the maximum relative sliding velocity during stance, 20 weeks after injury. In conclusion, a connection between an increase in the relative surface velocity and gross morphological damage might be due to an increase in the normal stress and the plowing friction between the surfaces.

Keywords

Post-traumatic osteoarthritis Knee injury Gait Kinematics Sliding velocity 

Notes

Acknowledgments

The authors would like to gratefully acknowledge Sarah Flynn, Dean Brown, Vanessa Oliver, Cynddae McGown, Barbara Smith and Yamini Achari for their technical expertise. This work was funded by the Canadian Institutes of Health Research and The Arthritis Society (NGS, DAH). The authors have not received any financial support that may be perceived as a conflict of interest.

References

  1. 1.
    Anderson, D. D., S. Chubinskaya, F. Guilak, J. A. Martin, T. R. Oegema, S. A. Olson, and J. A. Buckwalter. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29:802–809, 2011.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Anderst, W. J., and S. Tashman. The association between velocity of the center of closest proximity on subchondral bones and osteoarthritis progression. J. Orthop. Res. 27:71–77, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Andriacchi, T. P., P. L. Briant, S. L. Bevill, and S. Koo. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin. Orthop. Relat. Res. 442:39–44, 2006.CrossRefPubMedGoogle Scholar
  4. 4.
    Barton, K. I., M. Shekarforoush, B. J. Heard, J. L. Sevick, P. Vakil, M. Atarod, R. Martin, Y. Achari, D. A. Hart, C. B. Frank, and N. G. Shrive. Use of pre-clinical surgically induced models to understand biomechanical and biological consequences of PTOA development. J. Orthop. Res. 35:454–465, 2017.CrossRefPubMedGoogle Scholar
  5. 5.
    Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renström. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24:152–164, 2006.CrossRefPubMedGoogle Scholar
  6. 6.
    Berchuck, M., T. P. Andriacchi, B. R. Bach, and B. Reider. Gait adaptations by patients who have a deficient anterior cruciate ligament. J. Bone Joint Surg. Am. 72:871–877, 1990.CrossRefPubMedGoogle Scholar
  7. 7.
    Beveridge, J. E., B. J. Heard, N. G. Shrive, and C. B. Frank. Tibiofemoral centroid velocity correlates more consistently with cartilage damage than does contact path length in two ovine models of stifle injury. J. Orthop. Res. 31:1745–1756, 2013.PubMedGoogle Scholar
  8. 8.
    Brandt, K. D., M. Doherty, and S. Lohmander. Osteoarthritis. Oxford: Oxford University Press, 2003.Google Scholar
  9. 9.
    Cummings, J. F., E. S. Grood, M. S. Levy, D. L. Korvick, R. Wyatt, and F. R. Noyes. The effects of graft width and graft laxity on the outcome of caprine anterior cruciate ligament reconstruction. J. Orthop. Res. 20:338–345, 2002.CrossRefPubMedGoogle Scholar
  10. 10.
    Damiano, D. L., and M. F. Abel. Relation of gait analysis to gross motor function in cerebral palsy. Dev. Med. Child Neurol. 38:389–396, 1996.CrossRefPubMedGoogle Scholar
  11. 11.
    Drez, D. J., J. DeLee, J. P. Holden, S. Arnoczky, F. R. Noyes, and T. S. Roberts. Anterior cruciate ligament reconstruction using bone-patellar tendon-bone allografts: a biological and biomechanical evaluation in goats. Am. J. Sports Med. 19(256–63):1991, 1991.Google Scholar
  12. 12.
    Elsaid, K. A., G. D. Jay, M. L. Warman, D. K. Rhee, and C. O. Chichester. Association of articular cartilage degradation and loss of boundary-lubricating ability of synovial fluid following injury and inflammatory arthritis. Arthritis Rheum. 52:1746–1755, 2005.CrossRefPubMedGoogle Scholar
  13. 13.
    Elsaid, K. A., J. T. Machan, K. Waller, B. C. Fleming, and G. D. Jay. The impact of anterior cruciate ligament injury on lubricin metabolism and the effect of inhibiting tumor necrosis factor α on chondroprotection in an animal model. Arthritis Rheum. 60:2997–3006, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Frank, C. B., J. E. Beveridge, K. D. Huebner, B. J. Heard, J. E. Tapper, E. J. O. O’Brien, and N. G. Shrive. Complete ACL/MCL deficiency induces variable degrees of instability in sheep with specific kinematic abnormalities correlating with degrees of early osteoarthritis. J. Orthop. Res. 30:384–392, 2012.CrossRefPubMedGoogle Scholar
  15. 15.
    Grood, E. S., and W. J. Suntay. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J. Biomech. Eng. 105:136–144, 1983.CrossRefPubMedGoogle Scholar
  16. 16.
    Kotulski, Z. A., and W. Szczepinski. Error Analysis with Applications in Engineering. Dordrecht: Springer, Netherlands, 2010.CrossRefGoogle Scholar
  17. 17.
    Linn, F. C. Lubrication of animal joints. II. The mechanism. J. Biomech. 1:193–205, 1968.CrossRefPubMedGoogle Scholar
  18. 18.
    Mow, V. C., G. A. Ateshian, and R. L. Spilker. Biomechanics of diarthrodial joints: a review of twenty years of progress. J. Biomech. Eng. 115:460, 1993.CrossRefPubMedGoogle Scholar
  19. 19.
    Osterhoff, G., S. Löffler, H. Steinke, C. Feja, C. Josten, and P. Hepp. Comparative anatomical measurements of osseous structures in the ovine and human knee. Knee 18:98–103, 2011.CrossRefPubMedGoogle Scholar
  20. 20.
    Reynolds, O. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 40:191–203, 1886.CrossRefGoogle Scholar
  21. 21.
    Rosvold, J. M., M. Atarod, C. B. Frank, and N. G. Shrive. An instrumented spatial linkage for measuring knee joint kinematics. Knee 23:43–48, 2016.CrossRefPubMedGoogle Scholar
  22. 22.
    Schmidt, T. A., and R. L. Sah. Effect of synovial fluid on boundary lubrication of articular cartilage. Osteoarthr. Cartil. 15:35–47, 2007.CrossRefPubMedGoogle Scholar
  23. 23.
    Schuler, N. B., M. J. Bey, J. T. Shearn, and D. L. Butler. Evaluation of an electromagnetic position tracking device for measuring in vivo, dynamic joint kinematics. J. Biomech. 38:2113–2117, 2005.CrossRefPubMedGoogle Scholar
  24. 24.
    Shekarforoush, M., K. I. Barton, M. Atarod, B. J. Heard, J. L. Sevick, R. Martin, D. A. Hart, C. B. Frank, and N. G. Shrive. An explicit method for analysis of three-dimensional linear and angular velocity of a joint, with specific application to the knee joint. J. Med. Biol. Eng. 38:1–11, 2017.  https://doi.org/10.1007/s40846-017-0298-1.CrossRefGoogle Scholar
  25. 25.
    Shekarforoush, M., K. I. Barton, J. E. Beveridge, M. Scott, C. R. Martin, G. Muench, B. J. Heard, J. L. Sevick, D. A. Hart, C. B. Frank, and N. G. Shrive. Alterations in joint angular velocity following traumatic knee injury in ovine models. Ann. Biomed. Eng. 2019.  https://doi.org/10.1007/s10439-019-02203-6.CrossRefPubMedGoogle Scholar
  26. 26.
    Shekarforoush, M., J. E. Beveridge, D. A. Hart, C. B. Frank, and N. G. Shrive. Correlation between translational and rotational kinematic abnormalities and osteoarthritis-like damage in two in vivo sheep injury models. J. Biomech. 2018.  https://doi.org/10.1016/j.jbiomech.2018.04.046.CrossRefPubMedGoogle Scholar
  27. 27.
    Sonnery-Cottet, B., and P. Colombet. Partial tears of the anterior cruciate ligament. Orthop. Traumatol. Surg. Res. 102:S59–S67, 2016.CrossRefPubMedGoogle Scholar
  28. 28.
    Sweigart, M. A., C. F. Zhu, D. M. Burt, P. D. DeHoll, C. M. Agrawal, T. O. Clanton, and K. A. Athanasiou. Intraspecies and interspecies comparison of the compressive properties of the medial meniscus. Ann. Biomed. Eng. 32:1569–1579, 2004.CrossRefPubMedGoogle Scholar
  29. 29.
    Tapper, J. E., S. Fukushima, H. Azuma, C. Sutherland, L. Marchuk, G. M. Thornton, J. L. Ronsky, R. Zernicke, N. G. Shrive, and C. B. Frank. Dynamic in vivo three-dimensional (3D) kinematics of the anterior cruciate ligament/medial collateral ligament transected ovine stifle joint. J. Orthop. Res. 26:660–672, 2008.CrossRefPubMedGoogle Scholar
  30. 30.
    Tapper, J. E., J. L. Ronsky, M. J. Powers, C. Sutherland, T. Majima, C. B. Frank, and N. G. Shrive. In vivo measurement of the dynamic 3-D kinematics of the ovine stifle joint. J. Biomech. Eng. 126:301–305, 2004.CrossRefPubMedGoogle Scholar
  31. 31.
    Temponi, E. F., L. H. de Carvalho Júnior, B. Sonnery-Cottet, and P. Chambat. Partial tearing of the anterior cruciate ligament: diagnosis and treatment. Rev. Bras. Ortop. 50:9–15, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Waldman, S. D., and J. T. Bryant. Dynamic contact stress and rolling resistance model for total knee arthroplasties. J. Biomech. Eng. 119:254–260, 1997.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, H., and G. A. Ateshian. The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J. Biomech. 30:771–776, 1997.CrossRefPubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  • Mehdi Shekarforoush
    • 1
    • 2
    • 3
    • 7
    Email author
  • Paris Vakiel
    • 1
    • 2
    • 7
  • Michael Scott
    • 4
    • 7
  • Gregory Muench
    • 4
    • 7
  • David A. Hart
    • 1
    • 3
    • 5
    • 6
    • 7
  • Nigel G. Shrive
    • 1
    • 2
    • 3
    • 7
  1. 1.McCaig Institute for Bone & Joint Health, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  3. 3.Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryCanada
  4. 4.Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada
  5. 5.Section of Orthopaedics, Department of Surgery, Foothills HospitalUniversity of CalgaryCalgaryCanada
  6. 6.Faculty of KinesiologyUniversity of CalgaryCalgaryCanada
  7. 7.Cumming School of Medicine, Health Sciences CentreUniversity of CalgaryCalgaryCanada

Personalised recommendations