Skip to main content

Advertisement

Log in

Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior

  • Biomaterials - Engineering Cell Behavior
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cancer is one of the leading causes of death both in the United States and worldwide. The dynamic microenvironment in which tumors grow consists of fibroblasts, immune cells, extracellular matrix (ECM), and cytokines that enable progression and metastasis. Novel biomaterials that mimic these complex surroundings give insight into the biological, chemical, and physical environment that cause cancer cells to metastasize and invade into other tissues. Two-dimensional (2D) cultures are useful for gaining limited information about cancer cell behavior; however, they do not accurately represent the environments that cells experience in vivo. Recent advances in the design and tunability of diverse three-dimensional (3D) biomaterials complement biological knowledge and allow for improved recapitulation of in vivo conditions. Understanding cell–ECM and cell–cell interactions that facilitate tumor survival will accelerate the design of more effective therapies. This review discusses innovative materials currently being used to study tumor and immune cell behavior and interactions, including materials that mimic the ECM composition, mechanical stiffness, and integrin binding sites of the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akhavan, A., O. L. Griffith, L. Soroceanu, D. Leonoudakis, M. G. Luciani-Torres, A. Daemen, J. W. Gray, and J. L. Muschler. Loss of cell-surface laminin anchoring promotes tumor growth and is associated with poor clinical outcomes. Cancer Res. 72:2578–2588, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aljghami, M. E., S. Saboor, and S. Amini-Nik. Emerging innovative wound dressings. Ann. Biomed. Eng. 47:659–675, 2019.

    Article  PubMed  Google Scholar 

  3. Alves, S. M., T. Zhu, A. Shostak, N. S. Rossen, and M. Rafat. Studying normal tissue radiation effects using extracellular matrix hydrogels. J. Vis. Exp. 149:e59304, 2019.

    Google Scholar 

  4. Astashkina, A., and D. W. Grainger. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv. Drug Deliv. Rev. 69–70:1–18, 2014.

    Article  PubMed  CAS  Google Scholar 

  5. Axpe, E., and M. Oyen. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 17:1976, 2016.

    Article  PubMed Central  CAS  Google Scholar 

  6. Beachley, V. Z., M. T. Wolf, K. Sadtler, S. S. Manda, H. Jacobs, M. R. Blatchley, J. S. Bader, A. Pandey, D. Pardoll, and J. H. Elisseeff. Tissue matrix arrays for high-throughput screening and systems analysis of cell function. Nat. Methods 12:1197–1204, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bissell, M. J., and D. Radisky. Putting tumours in context. Nat. Rev. Cancer 1:46–54, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bleijs, M., M. Wetering, H. Clevers, and J. Drost. Xenograft and organoid model systems in cancer research. EMBO J. 38:1–11, 2019.

    Article  CAS  Google Scholar 

  9. Booth, A. J., R. Hadley, A. M. Cornett, A. A. Dreffs, S. A. Matthes, J. L. Tsui, K. Weiss, J. C. Horowitz, V. F. Fiore, T. H. Barker, B. B. Moore, F. J. Martinez, L. E. Niklason, and E. S. White. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am. J. Respir. Crit. Care Med. 186:866–876, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brabletz, T., R. Kalluri, M. A. Nieto, and R. A. Weinberg. EMT in cancer. Nat. Rev. Cancer 18:128–134, 2018.

    Article  CAS  PubMed  Google Scholar 

  11. Cavo, M., M. Caria, I. Pulsoni, F. Beltrame, M. Fato, and S. Scaglione. A new cell-laden 3D Alginate-Matrigel hydrogel resembles human breast cancer cell malignant morphology, spread and invasion capability observed “in vivo”. Sci. Rep. 8:1–12, 2018.

    Article  CAS  Google Scholar 

  12. Cavo, M., M. Fato, L. Peñuela, F. Beltrame, R. Raiteri, and S. Scaglione. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci. Rep. 6:35367, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chan, A. S., H. H. N. Yan, and S. Y. Leung. Breakthrough moments: organoid models of cancer. Cell Stem Cell 24:839–840, 2019.

    Article  CAS  PubMed  Google Scholar 

  14. Chaudhuri, O., S. T. Koshy, C. B. Da Cunha, J. W. Shin, C. S. Verbeke, K. H. Allison, and D. J. Mooney. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13:970–978, 2014.

    Article  CAS  PubMed  Google Scholar 

  15. Chaudhuri, P. K., B. C. Low, and C. T. Lim. Mechanobiology of tumor growth. Chem. Rev. 118:6499–6515, 2018.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Z., P. Zhao, Z. Luo, M. Zheng, H. Tian, P. Gong, G. Gao, H. Pan, L. Liu, A. Ma, H. Cui, Y. Ma, and L. Cai. Cancer cell membrane-biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 10:10049–10057, 2016.

    Article  CAS  PubMed  Google Scholar 

  17. Clevers, H. Modeling development and disease with organoids. Cell 165:1586–1597, 2016.

    Article  CAS  PubMed  Google Scholar 

  18. Costa, E. C., A. F. Moreira, D. de Melo-Diogo, V. M. Gaspar, M. P. Carvalho, and I. J. Correia. 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol. Adv. 34:1427–1441, 2016.

    Article  PubMed  Google Scholar 

  19. Cox, T. R., and J. T. Erler. Remodeling and homeostasis of the extracellular matrix: implications for fibrotic diseases and cancer. Dis. Model. Mech. 4:165–178, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cretu, A., P. Castagnino, and R. Assoian. Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. J. Vis. Exp. 42:e2089, 2010.

    Google Scholar 

  21. Dai, J., L. Qin, Y. Chen, H. Wang, G. Lin, X. Li, H. Liao, and H. Fang. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J. Mech. Behav. Biomed. Mater. 90:226–238, 2019.

    Article  CAS  PubMed  Google Scholar 

  22. Diao, J., C. Zhang, D. Zhang, X. Wang, J. Zhang, C. Ma, K. Deng, T. Jiang, W. Jia, and T. Xu. Role and mechanisms of a three-dimensional bioprinted microtissue model in promoting proliferation and invasion of growth-hormone-secreting pituitary adenoma cells. Biofabrication 11:025006, 2019.

    Article  CAS  PubMed  Google Scholar 

  23. Díaz-Saldívar, P., and J. P. Huidobro-Toro. ATP-loaded biomimetic nanoparticles as controlled release system for extracellular drugs in cancer applications. Int. J. Nanomed. 14:2433–2447, 2019.

    Article  Google Scholar 

  24. Drost, J., and H. Clevers. Organoids in cancer research. Nat. Rev. Cancer 18:407–418, 2018.

    Article  CAS  PubMed  Google Scholar 

  25. Drost, J., R. H. Van Jaarsveld, B. Ponsioen, C. Zimberlin, R. Van Boxtel, A. Buijs, N. Sachs, R. M. Overmeer, G. J. Offerhaus, H. Begthel, J. Korving, M. Van De Wetering, G. Schwank, M. Logtenberg, E. Cuppen, H. J. Snippert, J. P. Medema, G. J. P. L. Kops, and H. Clevers. Sequential cancer mutations in cultured human intestinal stem cells. Nature 521:43–47, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Duarte, A. A., E. Gogola, N. Sachs, M. Barazas, S. Annunziato, J. R. De Ruiter, A. Velds, S. Blatter, J. M. Houthuijzen, M. Van De Ven, H. Clevers, P. Borst, J. Jonkers, and S. Rottenberg. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat. Methods 15:134–140, 2018.

    Article  CAS  PubMed  Google Scholar 

  27. Duarte Campos, D. F., A. Bonnin Marquez, C. O’Seanain, H. Fischer, A. Blaeser, M. Vogt, D. Corallo, and S. Aveic. Exploring cancer cell behavior in vitro in three-dimensional multicellular bioprintable collagen-based hydrogels. Cancers 11:180, 2019.

    Article  PubMed Central  CAS  Google Scholar 

  28. Elosegui-Artola, A., E. Bazellières, M. D. Allen, I. Andreu, R. Oria, R. Sunyer, J. J. Gomm, J. F. Marshall, J. L. Jones, X. Trepat, and P. Roca-Cusachs. Rigidity sensing and adaptation through regulation of integrin types. Nat. Mater. 13:631–637, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eskiizmir, G., Y. Baskın, and K. Yapıcı. Graphene-based nanomaterials in cancer treatment and diagnosis. Fullerens, Graphenes Nanotubes, pp. 331–374, 2018.

  30. Fang, M., J. Yuan, C. Peng, and Y. Li. Collagen as a double-edged sword in tumor progression. Tumour Biol. 35:2871–2882, 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Fatehullah, A., S. H. Tan, and N. Barker. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–254, 2016.

    Article  PubMed  CAS  Google Scholar 

  32. Florczyk, S. J., F. M. Kievit, K. Wang, A. E. Erickson, R. G. Ellenbogen, and M. Zhang. 3D porous chitosan–alginate scaffolds promote proliferation and enrichment of cancer stem-like cells. J. Mater. Chem. B 4:6326–6334, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Frantz, C., K. M. Stewart, and V. M. Weaver. The extracellular matrix at a glance. J. Cell Sci. 123:4195–4200, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gill, B. J., D. L. Gibbons, L. C. Roudsari, J. E. Saik, Z. H. Rizvi, J. D. Roybal, J. M. Kurie, and J. L. West. A synthetic matrix with independently tunable biochemistry and mechanical properties to study epithelial morphogenesis and EMT in a lung adenocarcinoma model. Cancer Res. 72:6013–6023, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Glaser, D. E., and C. Viney. Biomimetic Materials. Biomaterial Science, pp. 349–360, 2013.

  36. Gonzalez, H., C. Hagerling, and Z. Werb. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 32:1267–1284, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gopinathan, J., and I. Noh. Recent trends in bioinks for 3D printing. Biomater. Res. 22:11, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guller, A. E., P. N. Grebenyuk, A. B. Shekhter, A. V. Zvyagin, and S. M. Deyev. Bioreactor-based tumor tissue engineering. Acta Nat. 8:44–58, 2016.

    CAS  Google Scholar 

  39. Hacker, B. C., J. D. Gomez, C. A. S. Batista, and M. Rafat. Growth and characterization of irradiated organoids from mammary glands. J. Vis. Exp. 147:e59293, 2019.

    Google Scholar 

  40. Hadden, W. J., J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Cho. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA. 114:5647–5652, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haggerty, A. E., and M. Oudega. Biomaterials for spinal cord repair. Neurosci. Bull. 29:445–459, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamidi, H., and J. Ivaska. Every step of the way: integrins in cancer progression and metastasis. Nat Rev. Can. 18:533–548, 2018.

    Article  CAS  Google Scholar 

  43. Han, Z., and Z. R. Lu. Targeting fibronectin for cancer imaging and therapy. J. Mater. Chem. B 5:639–654, 2017.

    Article  CAS  PubMed  Google Scholar 

  44. Hanahan, D., and R. A. Weinberg. Hallmarks of cancer: the next generation. Cell 144:646–674, 2011.

    Article  CAS  PubMed  Google Scholar 

  45. Handorf, A. M., Y. Zhou, M. A. Halanski, and W.-J. Li. Tissue stiffness dictates development, homeostasis, and disease progression. Organogenesis 11:1–15, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Heinrich, M. A., R. Bansal, T. Lammers, Y. S. Zhang, R. Michel Schiffelers, and J. Prakash. 3D-bioprinted mini-brain: a glioblastoma model to study cellular interactions and therapeutics. Adv. Mater. 31:1806590, 2019.

    Article  CAS  Google Scholar 

  47. Hinderer, S., S. L. Layland, and K. Schenke-Layland. ECM and ECM-like materials: biomaterials for applications in regenerative medicine and cancer therapy. Adv. Drug Deliv. Rev. 97:260–269, 2016.

    Article  CAS  PubMed  Google Scholar 

  48. Hoshiba, T. Decellularized extracellular matrix for cancer research. Materials 12:1–16, 2019.

    Article  CAS  Google Scholar 

  49. Hoshiba, T., and M. Tanaka. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages. Biochem. Biophys. Res. Commun. 439:291–296, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Hoshiba, T., and M. Tanaka. Decellularized matrices as in vitro models of extracellular matrix in tumor tissues at different malignant levels: mechanism of 5-fluorouracil resistance in colorectal tumor cells. Biochim. Biophys. Acta Mol. Cell Res. 2749–2757:2016, 1863.

    Google Scholar 

  51. Hu, W.-W., C.-H. Lin, and Z.-J. Hong. The enrichment of cancer stem cells using composite alginate/polycaprolactone nanofibers. Carbohydr. Polym. 206:70–79, 2019.

    Article  CAS  PubMed  Google Scholar 

  52. Huang, S., and D. E. Ingber. Cell tension, matrix mechanics, and cancer development. Cancer Cell 8:175–176, 2005.

    Article  CAS  PubMed  Google Scholar 

  53. Huang, X., J. Z. Williams, R. Chang, Z. Li, E. Gai, D. M. Patterson, Y. Wei, W. A. Lim, and T. A. Desai. DNA-scaffolded biomaterials enable modular and tunable control of cell-based cancer immunotherapies. bioRxiv 1:587105, 2019.

    Google Scholar 

  54. Huch, M., and B.-K. Koo. Modeling mouse and human development using organoid cultures. Development 142:3113–3125, 2015.

    Article  CAS  PubMed  Google Scholar 

  55. Hwang, J. W., S. M. Noh, B. Kim, and H. W. Jung. Gelation and crosslinking characteristics of photopolymerized poly(ethylene glycol) hydrogels. J. Appl. Polym. Sci. 132:1–6, 2015.

    Google Scholar 

  56. Ishii, S., J. Kaneko, and Y. Nagasaki. Development of a long-acting, protein-loaded, redox-active, injectable gel formed by a polyion complex for local protein therapeutics. Biomaterials 84:210–218, 2016.

    Article  CAS  PubMed  Google Scholar 

  57. Jang, I., K. A. Beningo, I. Jang, and K. A. Beningo. Integrins, CAFs and mechanical forces in the progression of cancer. Cancers 11:721, 2019.

    Article  CAS  PubMed Central  Google Scholar 

  58. Jin, H., and J. Varner. Integrins: roles in cancer development and as treatment targets. Br. J. Cancer 90:561–565, 2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jin, H., T. Zhu, X. Huang, M. Sun, H. Li, X. Zhu, M. Liu, Y. Xie, W. Huang, and D. Yan. ROS-responsive nanoparticles based on amphiphilic hyperbranched polyphosphoester for drug delivery: light-triggered size-reducing and enhanced tumor penetration. Biomaterials 211:68–80, 2019.

    Article  CAS  PubMed  Google Scholar 

  60. Jin, J., B. Krishnamachary, J. D. Barnett, S. Chatterjee, D. Chang, Y. Mironchik, F. Wildes, E. M. Jaffee, S. Nimmagadda, and Z. M. Bhujwalla. Human cancer cell membrane-coated biomimetic nanoparticles reduce fibroblast-mediated invasion and metastasis and induce T-cells. ACS Appl. Mater. Interfaces 11:7850–7861, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin, Q., G. Liu, S. Li, H. Yuan, Z. Yun, W. Zhang, S. Zhang, Y. Dai, and Y. Ma. Decellularized breast matrix as bioactive microenvironment for in vitro three-dimensional cancer culture. J. Cell. Physiol. 234:3425–3435, 2019.

    Article  CAS  PubMed  Google Scholar 

  62. Keane, T. J., J. Dziki, E. Sobieski, A. Smoulder, A. Castleton, N. Turner, L. J. White, and S. F. Badylak. Restoring mucosal barrier function and modifying macrophage phenotype with an extracellular matrix hydrogel: potential therapy for ulcerative colitis. J. Crohns. Colitis 11:360–368, 2017.

    PubMed  Google Scholar 

  63. Kim, H., H. Chung, J. Kim, D. Choi, Y. Shin, Y. G. Kang, B. Kim, S. Seo, S. Chung, and S. H. Seok. Macrophages-triggered sequential remodeling of endothelium-interstitial matrix to form pre-metastatic niche in microfluidic tumor microenvironment. Adv. Sci. 6:1900195, 2019.

    Article  CAS  Google Scholar 

  64. Kim, J., and J. S. Bae. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016, 2016.

  65. Kleinman, H. K., and G. R. Martin. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 15:378–386, 2005.

    Article  CAS  PubMed  Google Scholar 

  66. Koh, I., J. Cha, J. Park, J. Choi, S.-G. Kang, and P. Kim. The mode and dynamics of glioblastoma cell invasion into a decellularized tissue-derived extracellular matrix-based three-dimensional tumor model. Sci. Rep. 8:4608, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kroll, A. V., Y. Jiang, J. Zhou, M. Holay, R. H. Fang, and L. Zhang. Biomimetic nanoparticle vaccines for cancer therapy. Adv. Biosyst. 3:1800219, 2019.

    Article  Google Scholar 

  68. Kuen, Y. L., and D. J. Mooney. Alginate: properties and biomedical applications. Prog. Polym. Sci. 37:106–126, 2000.

    Google Scholar 

  69. Kuo, C.-H. R., J. Xian, J. D. Brenton, K. Franze, and E. Sivaniah. Complex stiffness gradient substrates for studying mechanotactic cell migration. Adv. Mater. 24:6059–6064, 2012.

    Article  CAS  PubMed  Google Scholar 

  70. Lai, J., G. Deng, Z. Sun, X. Peng, J. Li, P. Gong, P. Zhang, and L. Cai. Scaffolds biomimicking macrophages for a glioblastoma NIR-Ib imaging guided photothermal therapeutic strategy by crossing Blood-Brain Barrier. Biomaterials 211:48–56, 2019.

    Article  CAS  PubMed  Google Scholar 

  71. Langer, E. M., B. L. Allen-Petersen, S. M. King, N. D. Kendsersky, M. A. Turnidge, G. M. Kuziel, R. Riggers, R. Samatham, T. S. Amery, S. L. Jacques, B. C. Sheppard, J. E. Korkola, J. L. Muschler, G. Thibault, Y. H. Chang, J. W. Gray, S. C. Presnell, D. G. Nguyen, and R. C. Sears. Modeling tumor phenotypes in vitro with three-dimensional bioprinting. Cell Rep. 26:608.e6–623.e6, 2019.

    Article  CAS  Google Scholar 

  72. Lee, J., Q.-V. Le, G. Yang, and Y.-K. Oh. Cas9-edited immune checkpoint blockade PD-1 DNA polyaptamer hydrogel for cancer immunotherapy. Biomaterials 218:119359, 2019.

    Article  CAS  PubMed  Google Scholar 

  73. Lee, J. Y., J. Chang, A. A. Dominguez, S. Nam, J. Chang, H. Lee, S. Varma, L. S. Qi, R. B. West, and O. Chaudhuri. YAP-independent mechanotransduction drives breast cancer progression. bioRxiv 1:495499, 2018.

    Google Scholar 

  74. Lei, K., and L. Tang. Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomater. Sci. 7:733–749, 2019.

    Article  CAS  PubMed  Google Scholar 

  75. Lemma, E. D., S. Sergio, B. Spagnolo, M. Pisanello, L. Algieri, M. A. Coluccia, M. Maffia, M. De Vittorio, and F. Pisanello. Tunable mechanical properties of stent-like microscaffolds for studying cancer cell recognition of stiffness gradients. Microelectron. Eng. 190:11–18, 2018.

    Article  CAS  Google Scholar 

  76. Lewis, P. L., J. Su, M. Yan, F. Meng, S. S. Glaser, G. D. Alpini, R. M. Green, B. Sosa-Pineda, and R. N. Shah. Complex bile duct network formation within liver decellularized extracellular matrix hydrogels. Sci. Rep. 8:12220, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Liu, G., B. Wang, S. Li, Q. Jin, and Y. Dai. Human breast cancer decellularized scaffolds promote epithelial-to-mesenchymal transitions and stemness of breast cancer cells in vitro. J. Cell. Physiol. 234:9447–9456, 2019.

    Article  CAS  PubMed  Google Scholar 

  78. Lopresti, S. T., and B. N. Brown. Host response to naturally derived biomaterials. Host Response to Biomaterial, pp. 53–79, 2015.

  79. Lü, W. D., R. F. Sun, Y. R. Hu, J. R. Lu, L. Gu, Z. G. Liu, G. Y. Lei, Z. Qiang, and L. Cai. Photooxidatively crosslinked acellular tumor extracellular matrices as potential tumor engineering scaffolds. Acta Biomater. 71:460–473, 2018.

    Article  PubMed  CAS  Google Scholar 

  80. Luca, A. C., S. Mersch, R. Deenen, S. Schmidt, I. Messner, K. L. Schäfer, S. E. Baldus, W. Huckenbeck, R. P. Piekorz, W. T. Knoefel, A. Krieg, and N. H. Stoecklein. Impact of the 3D microenvironment on phenotype, gene expression, and EGFR inhibition of colorectal cancer cell lines. PLoS ONE 8:e59689, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma, X., C. Yu, P. Wang, W. Xu, X. Wan, C. S. E. Lai, J. Liu, A. Koroleva-Maharajh, and S. Chen. Rapid 3D bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture. Biomaterials 185:310–321, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Macdougall, L. J., K. L. Wiley, A. M. Kloxin, and A. P. Dove. Design of synthetic extracellular matrices for probing breast cancer cell growth using robust cyctocompatible nucleophilic thiol-yne addition chemistry. Biomaterials 178:435–447, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Manmohan, S., and M. Salnikova. Novel Approaches and Strategies for Biologics, Vaccines and Cancer Therapies. New York: Academic Press, 2015.

    Google Scholar 

  84. Mansour, A. A., J. T. Gonçalves, C. W. Bloyd, H. Li, S. Fernandes, D. Quang, S. Johnston, S. L. Parylak, X. Jin, and F. H. Gage. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36:432–441, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mantovani, A., F. Marchesi, A. Malesci, L. Laghi, and P. Allavena. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14:399–416, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Medina, S. H., B. Bush, M. Cam, E. Sevcik, F. W. DelRio, K. Nandy, and J. P. Schneider. Identification of a mechanogenetic link between substrate stiffness and chemotherapeutic response in breast cancer. Biomaterials 202:1–11, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mei, E., S. Li, J. Song, R. Xing, Z. Li, and X. Yan. Self-assembling collagen/alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloids Surf. A 577:570–575, 2019.

    Article  CAS  Google Scholar 

  88. Meinert, C., K. Schrobback, D. W. Hutmacher, and T. J. Klein. A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci. Rep. 7:1–14, 2017.

    Article  CAS  Google Scholar 

  89. Meng, F., C. M. Meyer, D. Joung, D. A. Vallera, M. C. McAlpine, and A. Panoskaltsis-Mortari. 3D bioprinted in vitro metastatic models via reconstruction of tumor microenvironments. Adv. Mater. 31:1806899, 2019.

    Article  CAS  Google Scholar 

  90. Migonney, V. History of Biomaterials. Biomaterials, pp. 1–10, 2014.

  91. Mollica, P. A., E. N. Booth-Creech, J. A. Reid, M. Zamponi, S. M. Sullivan, X.-L. Palmer, P. C. Sachs, and R. D. Bruno. 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater. 95:201–213, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Mondal, A., A. Gebeyehu, R. Subramanian, A. Rishi, and M. Singh. Abstract 5018: bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel. Cancer Res 78(13 Suppl):2018, 2018.

    Google Scholar 

  93. Monteran, L., and N. Erez. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor microenvironment. Front. Immunol. 10:1–15, 2019.

    Article  CAS  Google Scholar 

  94. Narkhede, A. A., J. H. Crenshaw, R. M. Manning, and S. S. Rao. The influence of matrix stiffness on the behavior of brain metastatic breast cancer cells in a biomimetic hyaluronic acid hydrogel platform. J. Biomed. Mater. Res. A 106:1832–1841, 2018.

    Article  CAS  PubMed  Google Scholar 

  95. Neal, J. T., et al. Organoid modeling of the tumor immune microenvironment. Cell 175:1972.e16–1988.e16, 2018.

    Article  CAS  Google Scholar 

  96. Novak, C. M., E. N. Horst, C. C. Taylor, C. Z. Liu, and G. Mehta. Fluid shear stress stimulates breast cancer cells to display invasive and chemoresistant phenotypes while upregulating PLAU in a 3D bioreactor. Biotechnol. Bioeng., 2019.

  97. Page, J. M., A. R. Merkel, N. S. Ruppender, R. Guo, U. C. Dadwal, S. A. Cannonier, S. Basu, S. A. Guelcher, and J. A. Sterling. Matrix rigidity regulates the transition of tumor cells to a bone-destructive phenotype through integrin β3 and TGF-β receptor type II. Biomaterials 64:33–44, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pang, M., Y. Teng, J. Huang, Y. Yuan, F. Lin, and C. Xiong. Substrate stiffness promotes latent TGF-β1 activation in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 483:553–558, 2017.

    Article  CAS  PubMed  Google Scholar 

  99. Pfeifer, C. R., C. M. Alvey, J. Irianto, and D. E. Discher. Genome variation across cancers scales with tissue stiffness: an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2:103–114, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Piccoli, M., E. D’Angelo, S. Crotti, F. Sensi, L. Urbani, E. Maghin, A. Burns, P. De Coppi, M. Fassan, M. Rugge, F. Rizzolio, A. Giordano, P. Pilati, E. Mammano, S. Pucciarelli, and M. Agostini. Decellularized colorectal cancer matrix as bioactive microenvironment for in vitro 3D cancer research. J. Cell. Physiol. 233:5937–5948, 2018.

    Article  CAS  PubMed  Google Scholar 

  101. Pinto, M. L., E. Rios, A. C. Silva, S. C. Neves, H. R. Caires, A. T. Pinto, C. Durães, F. A. Carvalho, A. P. Cardoso, N. C. Santos, C. C. Barrias, D. S. Nascimento, P. Pinto-do-Ó, M. A. Barbosa, F. Carneiro, and M. J. Oliveira. Decellularized human colorectal cancer matrices polarize macrophages towards an anti-inflammatory phenotype promoting cancer cell invasion via CCL18. Biomaterials 124:211–224, 2017.

    Article  CAS  PubMed  Google Scholar 

  102. Pradhan, S., J. M. Clary, D. Seliktar, and E. A. Lipke. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 115:141–154, 2017.

    Article  CAS  PubMed  Google Scholar 

  103. Rafat, M., T. A. Aguilera, M. Vilalta, L. L. Bronsart, L. A. Soto, R. Von Eyben, M. A. Golla, Y. Ahrari, S. Melemenidis, A. Afghahi, M. J. Jenkins, A. W. Kurian, K. C. Horst, A. J. Giaccia, and E. E. Graves. Macrophages promote circulating tumor cell-mediated local recurrence following radiotherapy in immunosuppressed patients. Cancer Res. 78:4241–4252, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ramamoorthy, P., S. M. Thomas, G. Kaushik, D. Subramaniam, K. M. Chastain, A. Dhar, O. Tawfik, A. Kasi, W. Sun, S. Ramalingam, S. Gunewardena, S. Umar, J. M. Mammen, S. B. Padhye, S. J. Weir, R. A. Jensen, G. Sitta Sittampalam, and S. Anant. Metastatic tumor-in-A-Dish, a novel multicellular organoid to study lung colonization and predict therapeutic response. Cancer Res. 79:1681–1695, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Read, G. H., N. Miura, J. L. Carter, K. T. Kines, K. Yamamoto, N. Devasahayam, J. Y. Cheng, K. A. Camphausen, M. C. Krishna, and A. H. Kesarwala. Three-dimensional alginate hydrogels for radiobiological and metabolic studies of cancer cells. Colloids Surf. B 171:197–204, 2018.

    Article  CAS  Google Scholar 

  106. Rianna, C., and M. Radmacher. Influence of microenvironment topography and stiffness on the mechanics and motility of normal and cancer renal cells. Nanoscale 9:11222–11230, 2017.

    Article  CAS  PubMed  Google Scholar 

  107. Rianna, C., and M. Radmacher. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. Eur. Biophys. J. 46:309–324, 2017.

    Article  CAS  PubMed  Google Scholar 

  108. Rice, A. J., E. Cortes, D. Lachowski, B. C. H. Cheung, S. A. Karim, J. P. Morton, and A. del Río Hernández. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6:e352–e352, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Romero-López, M., A. L. Trinh, A. Sobrino, M. M. S. Hatch, M. T. Keating, C. Fimbres, D. E. Lewis, P. D. Gershon, E. L. Botvinick, M. Digman, J. S. Lowengrub, and C. C. W. Hughes. Recapitulating the human tumor microenvironment: colon tumor-derived extracellular matrix promotes angiogenesis and tumor cell growth. Biomaterials 116:118–129, 2017.

    Article  PubMed  CAS  Google Scholar 

  110. Rossi, G., A. Manfrin, and M. P. Lutolf. Progress and potential in organoid research. Nat. Rev. Genet. 19:671–687, 2018.

    Article  CAS  PubMed  Google Scholar 

  111. Sachs, N., and H. Clevers. Organoid cultures for the analysis of cancer phenotypes. Curr. Opin. Genet. Dev. 24:68–73, 2014.

    Article  CAS  PubMed  Google Scholar 

  112. Sadtler, K., S. D. Sommerfeld, M. T. Wolf, X. Wang, S. Majumdar, L. Chung, D. S. Kelkar, A. Pandey, and J. H. Elisseeff. Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury. Semin. Immunol. 29:14–23, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Saito, Y., T. Muramatsu, Y. Kanai, H. Ojima, A. Sukeda, N. Hiraoka, E. Arai, Y. Sugiyama, J. Matsuzaki, R. Uchida, N. Yoshikawa, R. Furukawa, and H. Saito. Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep. 27:1265.e4–1276.e4, 2019.

    Article  CAS  Google Scholar 

  114. Saldin, L. T., M. C. Cramer, S. S. Velankar, L. J. White, and S. F. Badylak. Extracellular matrix hydrogels from decellularized tissues: structure and function. Acta Biomater. 49:1–15, 2017.

    Article  CAS  PubMed  Google Scholar 

  115. Sawicki, L. A., A. M. Kloxin, K. E. Ross, J. E. Cowart, L. Pradhan, C. H. Wu, and E. M. Ovadia. Tunable synthetic extracellular matrices to investigate breast cancer response to biophysical and biochemical cues. APL Bioeng. 3:016101, 2019.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Seo, Y., Y. Jung, and S. H. Kim. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. Acta Biomater. 67:270–281, 2018.

    Article  CAS  PubMed  Google Scholar 

  117. Smithmyer, M. E., J. B. Spohn, and A. M. Kloxin. Probing fibroblast activation in response to extracellular cues with whole protein- or peptide-functionalized step-growth hydrogels. ACS Biomater. Sci. Eng. 4:3304–3316, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Song, H., P. Yang, P. Huang, C. Zhang, D. Kong, and W. Wang. Injectable polypeptide hydrogel-based co-delivery of vaccine and immune checkpoint inhibitors improves tumor immunotherapy. Theranostics 9:2299–2314, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun, H., J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, P. Zhang, Z. Zhang, H. Yu, S. Wang, and Y. Li. Cancer-cell-biomimetic nanoparticles for targeted therapy of homotypic tumors. Adv. Mater. 28:9581–9588, 2016.

    Article  CAS  PubMed  Google Scholar 

  120. Sun, L., Y. Wang, J. Cen, X. Ma, L. Cui, Z. Qiu, Z. Zhang, H. Li, R.-Z. Yang, C. Wang, X. Chen, L. Wang, Y. Ye, H. Zhang, G. Pan, J.-S. Kang, Y. Ji, Y.-W. Zheng, S. Zheng, and L. Hui. Modelling liver cancer initiation with organoids derived from directly reprogrammed human hepatocytes. Nat. Cell Biol. 21:1015–1026, 2019.

    Article  CAS  PubMed  Google Scholar 

  121. Suresh, S. Biomechanics and biophysics of cancer cells. Acta Mater. 55:3989–4014, 2007.

    Article  CAS  Google Scholar 

  122. Swaminathan, S., Q. Hamid, W. Sun, and A. M. Clyne. Bioprinting of 3D breast epithelial spheroids for human cancer models. Biofabrication 11:025003, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Teng, M. W. L., S. F. Ngiow, A. Ribas, and M. J. Smyth. Classifying cancers basedon T-cell infiltration and PD-L1. Cancer Res. 75:2139–2145, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Theocharis, A. D., S. S. Skandalis, C. Gialeli, and N. K. Karamanos. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97:4–27, 2016.

    Article  CAS  PubMed  Google Scholar 

  125. Tian, B., Q. Luo, Y. Ju, and G. Song. A soft matrix enhances the cancer stem cell phenotype of HCC cells. Int. J. Mol. Sci. 20:2831, 2019.

    Article  CAS  PubMed Central  Google Scholar 

  126. Tian, H., Z. Luo, L. Liu, M. Zheng, Z. Chen, A. Ma, R. Liang, Z. Han, C. Lu, and L. Cai. Cancer cell membrane-biomimetic oxygen nanocarrier for breaking hypoxia-induced chemoresistance. Adv. Funct. Mater. 27:1703197, 2017.

    Article  CAS  Google Scholar 

  127. Tian, Y. F., H. Ahn, R. S. Schneider, S. N. Yang, L. Roman-Gonzalez, A. M. Melnick, L. Cerchietti, and A. Singh. Integrin-specific hydrogels as adaptable tumor organoids for malignant B and T cells. Biomaterials 73:110–119, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tlsty, T. D., and L. M. Coussens. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. Mech. Dis. 1:119–150, 2006.

    Article  CAS  Google Scholar 

  129. Tsai, S., L. McOlash, K. Palen, B. Johnson, C. Duris, Q. Yang, M. B. Dwinell, B. Hunt, D. B. Evans, J. Gershan, and M. A. James. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18:335, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Tuveson, D., and H. Clevers. Cancer modeling meets human organoid technology. Science. 364:952–955, 2019.

    Article  CAS  PubMed  Google Scholar 

  131. Walker, C., E. Mojares, and A. Del Río Hernández. Role of extracellular matrix in development and cancer progression. Int. J. Mol. Sci. 19:3028, 2018.

    Article  PubMed Central  CAS  Google Scholar 

  132. Wang, X., X. Zhang, X. Dai, X. Wang, X. Li, J. Diao, and T. Xu. Tumor-like lung cancer model based on 3D bioprinting. 3 Biotech 8:501, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wei, S. C., and J. Yang. Forcing through tumor metastasis: the interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26:111–120, 2016.

    Article  CAS  PubMed  Google Scholar 

  134. Wippold, F. J., and A. Perry. Neuropathology for the neuroradiologist: rosettes and pseudorosettes. Am. J. Neuroradiol. 27:488–492, 2006.

    PubMed  PubMed Central  Google Scholar 

  135. Wisdom, K. M., K. Adebowale, J. Chang, J. Y. Lee, S. Nam, R. Desai, N. S. Rossen, M. Rafat, R. B. West, L. Hodgson, and O. Chaudhuri. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9:4144, 2018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Wolf, M. T., K. A. Daly, E. P. Brennan-Pierce, S. A. Johnson, C. A. Carruthers, A. D’Amore, S. P. Nagarkar, S. S. Velankar, and S. F. Badylak. A hydrogel derived from decellularized dermal extracellular matrix. Biomaterials 33:7028–7038, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wolf, M. T., S. Ganguly, T. L. Wang, C. W. Anderson, K. Sadtler, R. Narain, C. Cherry, A. J. Parrillo, B. V. Park, G. Wang, F. Pan, S. Sukumar, D. M. Pardoll, and J. H. Elisseeff. A biologic scaffold-associated type 2 immune microenvironment inhibits tumor formation and synergizes with checkpoint immunotherapy. Sci. Transl. Med. 11:eaat7973, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Xu, K., K. Ganapathy, T. Andl, Z. Wang, J. A. Copland, R. Chakrabarti, and S. J. Florczyk. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines. Biomaterials 217:119311, 2019.

    Article  CAS  PubMed  Google Scholar 

  139. Xu, K., F. Lee, S. J. Gao, J. E. Chung, H. Yano, and M. Kurisawa. Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. J. Control. Release 166:203–210, 2013.

    Article  CAS  PubMed  Google Scholar 

  140. Xuan, W., Q. Qu, B. Zheng, S. Xiong, and G.-H. Fan. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines. J. Leukoc. Biol. 97:61–69, 2015.

    Article  PubMed  CAS  Google Scholar 

  141. Yom-Tov, O., D. Seliktar, and H. Bianco-Peled. PEG-Thiol based hydrogels with controllable properties. Eur. Polym. J. 74:1–12, 2016.

    Article  CAS  Google Scholar 

  142. Yu, S., C. Wang, J. Yu, J. Wang, Y. Lu, Y. Zhang, X. Zhang, Q. Hu, W. Sun, C. He, X. Chen, and Z. Gu. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv. Mater. 30:1801527, 2018.

    Article  CAS  Google Scholar 

  143. Yu, W., X. He, Z. Yang, X. Yang, W. Xiao, R. Liu, R. Xie, L. Qin, and H. Gao. Sequentially responsive biomimetic nanoparticles with optimal size in combination with checkpoint blockade for cascade synergetic treatment of breast cancer and lung metastasis. Biomaterials 217:119309, 2019.

    Article  CAS  PubMed  Google Scholar 

  144. Yue, B. Biology of the extracellular matrix: an overview. J. Glaucoma 23:S20–S23, 2014.

    Article  PubMed  Google Scholar 

  145. Zamani, E., M. Shokrzadeh, M. Fallah, and F. Shaki. A review of acrylamide toxicity and its mechanism. Pharm. Biomed. Res. 3:1–7, 2017.

    Article  CAS  Google Scholar 

  146. Zhang, Z., H. Qian, M. Yang, R. Li, J. Hu, L. Li, L. Yu, B. Liu, and X. Qian. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment. Int. J. Nanomed. 12:1593–1605, 2017.

    Article  CAS  Google Scholar 

  147. Zhu, Y., S. Hideyoshi, H. Jiang, Y. Matsumura, J. L. Dziki, S. T. LoPresti, L. Huleihel, G. N. F. Faria, L. C. Fuhrman, R. Lodono, S. F. Badylak, and W. R. Wagner. Injectable, porous, biohybrid hydrogels incorporating decellularized tissue components for soft tissue applications. Acta Biomater. 73:112–126, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Institutes of Health and the National Cancer Institute [Grants #R00CA201304, #T32CA119925 (LAN)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Rafat.

Additional information

Associate Editor Erin Lavik oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Northcutt, L.A., Suarez-Arnedo, A. & Rafat, M. Emerging Biomimetic Materials for Studying Tumor and Immune Cell Behavior. Ann Biomed Eng 48, 2064–2077 (2020). https://doi.org/10.1007/s10439-019-02384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02384-0

Keywords

Navigation