Skip to main content
Log in

Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated with Flow-Diverting Stents

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Flow-diverting stents (FDS) are used to treat cerebral aneurysms. They promote the formation of a stable thrombus within the aneurysmal sac and, if successful, isolate the aneurysmal dome from mechanical stresses to prevent rupture. Platelet activation, a mechanism necessary for thrombus formation, is known to respond to biomechanical stimuli, particularly to the platelets’ residence time and shear stress exposure. Currently, there is no reliable method for predicting FDS treatment outcomes, either a priori or after the procedure. Eulerian computational fluid dynamic (CFD) studies of aneurysmal flow have searched for predictors of endovascular treatment outcome; however, the hemodynamics of thrombus formation cannot be fully understood without considering the platelets’ trajectories and their mechanics-triggered activation. Lagrangian analysis of the fluid mechanics in the aneurysmal vasculature provides novel metrics by tracking the platelets’ residence time (RT) and shear history (SH). Eulerian and Lagrangian parameters are compared for 19 patient-specific cases, both pre- and post-treatment, to assess the degree of change caused by the FDS and subsequent treatment efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aliseda, A., V. K. Chivukula, P. Mcgah, A. R. Prisco, J. A. Beckman, G. J. M. Garcia, N. A. Mokadam, and C. Mahr. LVAD outflow graft angle and thrombosis risk. ASAIO J. 63(1):14–23, 2017.

    Article  Google Scholar 

  2. Arzani, A., A. M. Gambaruto, G. Chen, and S. C. Shadden. Wall shear stress exposure time: a Lagrangian measure of near-wall stagnation and concentration in cardiovascular flows. Biomech. Model. Mechanobiol. 16(3):787–803, 2017.

    Article  Google Scholar 

  3. Augsburger, L., P. Reymond, D. A. Rufenacht, and N. Stergiopulos. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39(2):850–863, 2011.

    Article  CAS  Google Scholar 

  4. Barbour, M.C. Computational and experimental investigation into the hemodynamics of endovascularly treated cerebral aneurysms, 2018.

  5. Bederson, J. B., E. S. Connolly, H. Hunt Batjer, R. G. Dacey, J. E. Dion, M. N. Diringer, J. E. Duldner, R. E. Harbaugh, A. B. Patel, and R. H. Rosenwasser. AHA/ASA guideline guidelines for the management of aneurysmal subarachnoid hemorrhage a statement for healthcare professionals from a special writing group of the stroke council, American Heart Association. Stroke 40(3):994–1025, 2009.

    Article  Google Scholar 

  6. Berg, P., S. Saalfeld, G. Janiga, O. Brina, N. M. Cancelliere, P. Machi, and V. M. Pereira. Virtual stenting of intracranial aneurysms: a pilot study for the prediction of treatment success based on hemodynamic simulations. Int. J. Artif. Organs 41(11):698–705, 2018.

    Article  Google Scholar 

  7. Cebral, J. R., F. Mut, M. Raschi, S. Hodis, Y.-H. Ding, B. J. Erickson, R. Kadirvel, and D. F. Kallmes. Analysis of hemodynamics and aneurysm occlusion after flow-diverting treatment in rabbit models. AJNR 35(8):1567–1573, 2014.

    Article  CAS  Google Scholar 

  8. Chung, B., and J. R. Cebral. CFD for evaluation and treatment planning of aneurysms: review of proposed clinical uses and their challenges. Ann. Biomed. Eng. 43(1):122–138, 2015.

    Article  Google Scholar 

  9. Ghoshal, K., and M. Bhattacharyya. Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. Sci. World. 2014. https://doi.org/10.1155/2014/781857.

    Article  Google Scholar 

  10. Hathcock, J. J. Flow effects on coagulation and thrombosis. Arterioscler. Thromb. Vasc. Biol. 26(8):1729–1737, 2006.

    Article  CAS  Google Scholar 

  11. Huang, Q., J. Xu, J. Cheng, S. Wang, K. Wang, and J. M. Liu. Hemodynamic changes by flow diverters in rabbit aneurysm models. Stroke 44(7):1936–1941, 2013.

    Article  Google Scholar 

  12. Jesty, J., W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: combined effects of shear stress and exposure time. Platelets 14(3):143–149, 2003.

    Article  CAS  Google Scholar 

  13. Kallmes, D. F., Y. H. Ding, D. Dai, R. Kadirvel, D. A. Lewis, and H. J. Cloft. A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke 38(8):2346–2352, 2007.

    Article  Google Scholar 

  14. Larrabide, I., A. J. Geers, H. G. Morales, M. L. Aguilar, and D. A. Rüfenacht. Effect of aneurysm and ICA morphology on hemodynamics before and after flow diverter treatment. J. Neurointerv. Surg. 7(4):272–280, 2015.

    Article  Google Scholar 

  15. Lee, S.-W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131(6):061013, 2009.

    Article  Google Scholar 

  16. Levitt, M. R., D. L. Cooke, B. V. Ghodke, L. J. Kim, D. K. Hallam, and L. N. Sekhar. “Stent View” flat-detector CT and stent-assisted treatment strategies for complex intracranial aneurysms. World Neurosurg. 75(2):275–278, 2011.

    Article  Google Scholar 

  17. Levitt, M. R., P. M. Mcgah, A. Aliseda, P. D. Mourad, J. D. Nerva, S. S. Vaidya, R. P. Morton, B. V. Ghodke, and L. J. Kim. Cerebral aneurysms treated with flow-diverting stents: computational models with intravascular blood flow measurements. Am. J. Neuroradiol. 35(1):143–148, 2014.

    Article  CAS  Google Scholar 

  18. Maxwell, M. J., E. Westein, W. S. Nesbitt, S. Giuliano, S. M. Dopheide, and S. P. Jackson. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109(2):566–576, 2007.

    Article  CAS  Google Scholar 

  19. Meng, H., Z. Wang, M. Kim, R. D. Ecker, L. N. Hopkins, and K. Mitchell. Saccular aneurysms on straight and curved vessels are subject to different hemodynamics: implications of intravascular stenting. AJNR 27(9):1861–1865, 2006.

    CAS  PubMed  Google Scholar 

  20. Michelson, A. Platelets (13th ed.). London: Elsevier, 2013.

    Google Scholar 

  21. Molyneux, A. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus eendovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360(9342):1267–1274, 2002.

    Article  Google Scholar 

  22. Molyneux, A., R. Kerr, L. Yu, M. Clarke, M. Sneade, J. Yarnold, and P. Sandercock. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups. Lancet 336(9488):809–817, 2005.

    Article  Google Scholar 

  23. Ngoepe, M. N., A. F. Frangi, J. V. Byrne, and Y. Ventikos. Thrombosis in cerebral aneurysms and the computational modeling thereof: a review. Front. Physiol. 9:306, 2018.

    Article  Google Scholar 

  24. Osorio, A. F., R. Osorio, A. Ceballos, R. Tran, W. Clark, E. A. Divo, I. R. Argueta-Morales, A. J. Kassab, and W. M. DeCampli. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk. Comput. Methods Biomech. Biomed. Eng. 16(6):622–638, 2013.

    Article  Google Scholar 

  25. Paliwal, N., R.J. Damiano, J.M. Davies, A.H. Siddiqui, H. Meng. Association between hemodynamic modifications and clinical outcome of intracranial aneurysms treated using flow diverters, 2017.

  26. Piano, M., L. Valvassori, L. Quilici, G. Pero, and E. Boccardi. Midterm and long-term follow-up of cerebral aneurysms treated with flow diverter devices: a single-center experience. J. Neurosurg. 118(2):408–416, 2013.

    Article  Google Scholar 

  27. Rayz, V. L., L. Boussel, L. Ge, J. R. Leach, A. J. Martin, M. T. Lawton, C. McCulloch, and D. Saloner. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 38(10):3058–3069, 2010.

    Article  CAS  Google Scholar 

  28. Ringer, A. J., R. Rodriguez-Mercado, E. Veznedaroglu, E. I. Levy, R. A. Hanel, R. A. Mericle, D. K. Lopes, G. Lanzino, and A. S. Boulos. Defining the risk of retreatment for aneurysm recurrence or residual after initial treatment by endovascular coiling. Neurosurgery 65(2):311–315, 2009.

    Article  Google Scholar 

  29. Sinauridze, E., D. Kireev, N. Popenko, A. Pichugin, M. Panteleev, O. Krymskaya, and F. Ataullakhanov. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb. Haemost. 97(03):425–434, 2007.

    Article  CAS  Google Scholar 

  30. Vahidkhah, K., S. L. Diamond, and P. Bagchi. Platelet dynamics in three-dimensional simulation of whole blood. Biophys. J. 106(11):2529–2540, 2014.

    Article  CAS  Google Scholar 

  31. Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J. Physiol. 127(3):553–563, 1955.

    Article  CAS  Google Scholar 

  32. Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, A. H. Siddiqui, E. I. Levy, and H. Meng. Hemodynamic–morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152, 2011.

    Article  Google Scholar 

  33. Xu, J., Z. Wu, Y. Yu, N. Lv, S. Wang, C. Karmonik, J.-M. Liu, and Q. Huang. Combined effects of flow diverting strategies and parent artery curvature on aneurysmal hemodynamics: a CFD study. PLoS ONE 10(9):e0138648, 2015.

    Article  Google Scholar 

  34. Yin, W., S. K. Shanmugavelayudam, and D. A. Rubenstein. The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb. Res. 127:235–241, 2011.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health/National Institute of Neurological Disorders and Stroke Grants R01NS088072 and R01NS105692, American Heart Association Grant 18CDA34110295 and unrestricted educational equipment grants to our academic institution from Volcano Philips and Medtronic, which had no role in the experimental design, data analysis, or scholarship of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Aliseda.

Additional information

Associate Editor Ender A. Finol oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsh, L.M.M., Barbour, M.C., Chivukula, V.K. et al. Platelet Dynamics and Hemodynamics of Cerebral Aneurysms Treated with Flow-Diverting Stents. Ann Biomed Eng 48, 490–501 (2020). https://doi.org/10.1007/s10439-019-02368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02368-0

Keywords

Navigation