Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 12, pp 2416–2430 | Cite as

EMG-Informed Musculoskeletal Modeling to Estimate Realistic Knee Anterior Shear Force During Drop Vertical Jump in Female Athletes

  • Alessandro NavacchiaEmail author
  • Ryo Ueno
  • Kevin R. Ford
  • Christopher A. DiCesare
  • Gregory D. Myer
  • Timothy E. Hewett
Article

Abstract

The anterior cruciate ligament is the primary structural restraint to tibial anterior shear force. The anterior force occurring at the knee during landing contributes to anterior cruciate ligament injury risk, but it cannot be directly measured experimentally. The objective of this study was to develop electromyography-informed musculoskeletal simulations of the drop vertical jump motor task and assess the contribution of knee muscle forces to tibial anterior shear force. In this cross-sectional study, musculoskeletal simulations were used to estimate the muscle forces of thirteen female athletes performing a drop vertical jump using an electromyography-informed method. Muscle activation and knee loads that resulted from these simulations were compared to the results obtained with the more common approach of minimization of muscle effort (optimization-based method). Quadriceps–hamstrings and quadriceps–gastrocnemius co-contractions were progressively increased and their contribution to anterior shear force was quantified. The electromyography-informed method produced co-contraction indexes more consistent with electromyography data than the optimization-based method. The muscles that presented the largest contribution to peak anterior shear force were the gastrocnemii, likely from their wrapping around the posterior aspect of the tibia. The quadriceps–hamstring co-contraction provided a protective effect on the ACL and reduced peak anterior shear force by 292 N with a co-contraction index increase of 25% from baseline (31%), whereas a quadriceps–gastrocnemius co-contraction index of 61% increased peak anterior shear force by 797 N compared to baseline (42%). An increase in gastrocnemius contraction, which might be required to protect the ankle from the impact with the ground, produced a large quadriceps–gastrocnemius co-activation, increasing peak anterior shear force. A better understanding of each muscle’s contribution to anterior shear force and, consequently, anterior cruciate ligament tension may inform subject-specific injury prevention programs and rehabilitation protocols.

Keywords

Landing DVJ Musculoskeletal modeling Co-contraction EMG Knee ACL 

Notes

Acknowledgments

The authors acknowledge funding from NIH Grants National Institutes of Health/NIAMS Grants R01-AR049735, R01-AR056259, R01-AR055563, U01-AR067997 and the NCSRR Visiting Scholar Program.

References

  1. 1.
    Afschrift, M., L. Pitto, W. Aerts, R. van Deursen, I. Jonkers, and F. De Groote. Modulation of gluteus medius activity reflects the potential of the muscle to meet the mechanical demands during perturbed walking. Sci. Rep. 8:1175, 2018.Google Scholar
  2. 2.
    Agel, J., E. A. Arendt, and B. Bershadsky. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am. J. Sports Med. 33(4):524–530, 2005.PubMedGoogle Scholar
  3. 3.
    Anderson, F. C., and M. G. Pandy. Static and dynamic optimization solutions for gait are practically equivalent. J. Biomech. 34(2):153–161, 2001.PubMedGoogle Scholar
  4. 4.
    Aune, A. K., P. W. Cawley, and A. Ekeland. Quadriceps muscle contraction protects the anterior cruciate ligament during anterior tibial translation. Am. J. Sports Med. 25(2):187–190, 1997.PubMedGoogle Scholar
  5. 5.
    Bahr, R., and I. A. Bahr. Incidence of acute volleyball injuries: a prospective cohort study of injury mechanisms and risk factors. Scand. J. Med. Sci. Sports 7(3):166–171, 1997.PubMedGoogle Scholar
  6. 6.
    Bates, N. A., N. D. Schilaty, C. V. Nagelli, A. J. Krych, and T. E. Hewett. Novel mechanical impact simulator designed to generate clinically relevant anterior cruciate ligament ruptures. Clin. Biomech. 44:36–44, 2017.Google Scholar
  7. 7.
    Beynnon, B. D., J. S. Hall, D. R. Sturnick, M. J. DeSarno, M. Gardner-Morse, T. W. Tourville, H. C. Smith, J. R. Slauterbeck, S. J. Shultz, R. J. Johnson, and P. M. Vacek. Increased slope of the lateral tibial plateau subchondral bone is associated with greater risk of noncontact ACL injury in females but not in males: a prospective cohort study with a nested, matched case-control analysis. Am. J. Sports Med. 42(5):1039–1048, 2014.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Beynnon, B. D., P. M. Vacek, M. K. Newell, T. W. Tourville, H. C. Smith, S. J. Shultz, J. R. Slauterbeck, and R. J. Johnson. The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am. J. Sports Med. 42(8):1806–1812, 2014.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Boling, M. C., L. A. Bolgla, C. G. Mattacola, T. L. Uhl, and R. G. Hosey. Outcomes of a weight-bearing rehabilitation program for patients diagnosed with patellofemoral pain syndrome. Arch. Phys. Med. Rehabil. 87(11):1428–1435, 2006.PubMedGoogle Scholar
  10. 10.
    Brindle, T. J., J. Nyland, K. Ford, A. Coppola, and R. Shapiro. Electromyographic comparison of standard and modified closed-chain isometric knee extension exercises. J. Strength Cond. Res. 16(1):129–134, 2002.PubMedGoogle Scholar
  11. 11.
    Buford, W. L., F. M. Ivey, J. D. Malone, R. M. Patterson, G. L. Peare, D. K. Nguyen, and A. A. Stewart. Muscle balance at the knee-moment arms for the normal knee and the ACL-minus knee. IEEE Trans. Rehabil. Eng. 5(4):367–379, 1997.PubMedGoogle Scholar
  12. 12.
    Butler, D. L., F. R. Noyes, and E. S. Grood. Ligamentous restraints to anterior-posterior drawer in the human knee: biomechanical study. J. Bone Joint Surg. 62(2):259–270, 1980.PubMedGoogle Scholar
  13. 13.
    Corcos, D. M., G. L. Gottlieb, M. L. Latash, G. L. Almeida, and G. C. Agarwal. Electromechanical delay: an experimental artifact. J. Electromyogr. Kinesiol. 2(2):59–68, 1992.PubMedGoogle Scholar
  14. 14.
    Cram, J. R., G. Kasman, and J. Holtz. Introduction to surface electromyography. 1998. Gaithersburg. Marland: Aspen Publishers Inc., 1997.Google Scholar
  15. 15.
    De Groote, F., A. L. Kinney, A. V. Rao, and B. J. Fregly. Evaluation of direct collocation optimal control problem formulations for solving the muscle redundancy problem. Ann. Biomed. Eng. 44(10):2922–2936, 2016.PubMedPubMedCentralGoogle Scholar
  16. 16.
    De Luca, C. J. The use of surface electromyography in biomechanics. J. Appl. Biomech. 13(2):135–163, 1997.Google Scholar
  17. 17.
    de Rugy, A., G. E. Loeb, and T. J. Carroll. Muscle coordination is habitual rather than optimal. J. Neurosci. 32(21):7384–7391, 2012.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Delp, S. L., F. C. Anderson, A. S. Arnold, P. Loan, A. Habib, C. T. John, E. Guendelman, and D. G. Thelen. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11):1940–1950, 2007.PubMedGoogle Scholar
  19. 19.
    DeMers, M. S., J. L. Hicks, and S. L. Delp. Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries. J. Biomech. 52:17–23, 2017.PubMedGoogle Scholar
  20. 20.
    Elias, J. J., A. F. Faust, Y. H. Chu, E. Y. Chao, and A. J. Cosgarea. The soleus muscle acts as an agonist for the anterior cruciate ligament: an in vitro experimental study. Am. J. Sports Med. 31(2):241–246, 2003.PubMedGoogle Scholar
  21. 21.
    Erdemir, A., S. McLean, W. Herzog, and A. J. van den Bogert. Model-based estimation of muscle forces exerted during movements. Clin. Biomech. 22(2):131–154, 2007.Google Scholar
  22. 22.
    Faul, F., E. Erdfelder, A. Buchner, and A.-G. Lang. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 41(4):1149–1160, 2009.PubMedGoogle Scholar
  23. 23.
    Fleming, B. C., P. A. Renstrom, G. Ohlen, R. J. Johnson, G. D. Peura, B. D. Beynnon, and G. J. Badger. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J. Orthop. Res. 19(6):1178–1184, 2001.PubMedGoogle Scholar
  24. 24.
    Fong, D. T. P., Y. L. Hong, L. K. Chan, P. S. H. Yung, and K. M. Chan. A systematic review on ankle injury and ankle sprain in sports. Sports Med. 37(1):73–94, 2007.PubMedGoogle Scholar
  25. 25.
    Ford, K. R., G. D. Myer, and T. E. Hewett. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 35(10):1745–1750, 2003.PubMedGoogle Scholar
  26. 26.
    Ford, K. R., G. D. Myer, and T. E. Hewett. Reliability of landing 3D motion analysis: implications for longitudinal analyses. Med. Sci. Sports Exerc. 39(11):2021–2028, 2007.PubMedGoogle Scholar
  27. 27.
    Ford, K. R., G. D. Myer, L. C. Schmitt, T. L. Uhl, and T. E. Hewett. Preferential quadriceps activation in female athletes with incremental increases in landing intensity. J. Appl. Biomech. 27(3):215–222, 2011.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Gianotti, S. M., S. W. Marshall, P. A. Hume, and L. Bunt. Incidence of anterior cruciate ligament injury and other knee ligament injuries: a national population-based study. J. Sci. Med. Sport. 12(6):622–627, 2009.PubMedGoogle Scholar
  29. 29.
    Hashemi, J., R. Breighner, T. H. Jang, N. Chandrashekar, S. Ekwaro-Osire, and J. R. Slauterbeck. Increasing pre-activation of the quadriceps muscle protects the anterior cruciate ligament during the landing phase of a jump: an in vitro simulation. Knee. 17(3):235–241, 2010.PubMedGoogle Scholar
  30. 30.
    Hashemi, J., N. Chandrashekar, H. Mansouri, B. Gill, J. R. Slauterbeck, R. C. Schutt, E. Dabezies, and B. D. Beynnon. Shallow medial tibial plateau and steep medial and lateral tibial slopes new risk factors for anterior cruciate ligament injuries. Am. J. Sports Med. 38(1):54–62, 2010.PubMedGoogle Scholar
  31. 31.
    Hewett, T. E., and G. D. Myer. The mechanistic connection between the trunk, hip, knee, and anterior cruciate ligament injury. Exerc. Sport Sci. Rev. 39(4):161–166, 2011.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hewett, T. E., G. D. Myer, K. R. Ford, R. S. Heidt, A. J. Colosimo, S. G. McLean, A. J. van den Bogert, M. V. Paterno, and P. Succop. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes. Am. J. Sports Med. 33(4):492–501, 2005.PubMedGoogle Scholar
  33. 33.
    Hewett, T. E., M. V. Paterno, and G. A. Myer. Strategies for enhancing proprioception and neuromuscular control of the knee. Clin. Orthop. Relat. Res. 402:76–94, 2002.Google Scholar
  34. 34.
    Hewett, T. E., A. L. Stroupe, T. A. Nance, and F. R. Noyes. Plyometric training in female athletes: decreased impact forces and increased hamstring torques. Am. J. Sports Med. 24(6):765–773, 1996.PubMedGoogle Scholar
  35. 35.
    Kellis, E., F. Arabatzi, and C. Papadopoulos. Muscle co-activation around the knee in drop jumping using the co-contraction index. J. Electromyogr. Kinesiol. 13(3):229–238, 2003.PubMedGoogle Scholar
  36. 36.
    Kiapour, A. M., C. K. Demetropoulos, A. Kiapour, C. E. Quatman, S. C. Wordeman, V. K. Goel, and T. E. Hewett. Strain response of the anterior cruciate ligament to uniplanar and multiplanar loads during simulated landings: implications for injury mechanism. Am. J. Sports Med. 44(8):2087–2096, 2016.PubMedGoogle Scholar
  37. 37.
    Koshino, Y., T. Ishida, M. Yamanaka, Y. Ezawa, T. Okunuki, T. Kobayashi, M. Samukawa, H. Saito, and H. Tohyama. Kinematics and muscle activities of the lower limb during a side-cutting task in subjects with chronic ankle instability. Knee Surg. Sports Traumatol. Arthrosc. 24(4):1071–1080, 2016.PubMedGoogle Scholar
  38. 38.
    Laughlin, W. A., J. T. Weinhandl, T. W. Kernozek, S. C. Cobb, K. G. Keenan, and K. M. O’Connor. The effects of single-leg landing technique on ACL loading. J. Biomech. 44(10):1845–1851, 2011.PubMedGoogle Scholar
  39. 39.
    Li, G., T. W. Rudy, M. Sakane, A. Kanamori, C. B. Ma, and S. L. Y. Woo. The importance of quadriceps and hamstring muscle loading on knee kinematics land in situ forces in the ACL. J. Biomech. 32(4):395–400, 1999.PubMedGoogle Scholar
  40. 40.
    Lloyd, D. G., and T. F. Besier. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6):765–776, 2003.PubMedGoogle Scholar
  41. 41.
    Loeb, G. E. Optimal isn’t good enough. Biol. Cybern. 106(11–12):757–765, 2012.PubMedGoogle Scholar
  42. 42.
    Markolf, K. L., D. I. Burchfield, M. M. Shapiro, M. E. Shepard, G. A. M. Finerman, and J. L. Slauterbeck. Combined knee loading states that generate high anterior cruciate ligament forces. J. Orthop. Res. 13(6):930–935, 1995.PubMedGoogle Scholar
  43. 43.
    Markolf, K. L., J. F. Gorek, J. M. Kabo, and M. S. Shapiro. Direct measurement of resultant forces in the anterior cruciate ligament: an invitro study performed with a new experimental-technique. J. Bone Joint Surg. 72(4):557–567, 1990.PubMedGoogle Scholar
  44. 44.
    Martelli, S., D. Calvetti, E. Somersalo, and M. Viceconti. Stochastic modelling of muscle recruitment during activity. Interface Focus. 5(2):20140094, 2015.PubMedPubMedCentralGoogle Scholar
  45. 45.
    McLean, S. G., X. M. Huang, A. Su, and A. J. van den Bogert. Sagittal plane biomechanics cannot injure the ACL during sidestep cutting. Clin. Biomech. 19(8):828–838, 2004.Google Scholar
  46. 46.
    Mokhtarzadeh, H., C. H. Yeow, J. C. H. Goh, D. Oetomo, F. Malekipour, and P. V. S. Lee. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 46(11):1913–1920, 2013.PubMedGoogle Scholar
  47. 47.
    Navacchia, A., N. A. Bates, N. D. Schilaty, A. J. Krych, and T. E. Hewett. Knee abduction and internal rotation moments increase ACL force during landing through the posterior slope of the tibia. J. Orthop. Res. 2019.  https://doi.org/10.1002/jor.24313.CrossRefPubMedGoogle Scholar
  48. 48.
    Pflum, M. A., K. B. Shelburne, M. R. Torry, M. J. Decker, and M. G. Pandy. Model prediction of anterior cruciate ligament force during drop-landings. Med. Sci. Sports Exerc. 36(11):1949–1958, 2004.PubMedGoogle Scholar
  49. 49.
    Pizzolato, C., D. G. Lloyd, M. Sartori, E. Ceseracciu, T. F. Besier, B. J. Fregly, and M. Reggiani. CEINMS: a toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. J. Biomech. 48(14):3929–3936, 2015.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Rajagopal, A., C. L. Dembia, M. S. DeMers, D. D. Delp, J. L. Hicks, and S. L. Delp. Full-body musculoskeletal model for muscle-driven simulation of human gait. IEEE Trans. Biomed. Eng. 63(10):2068–2079, 2016.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Renstrom, P., S. W. Arms, T. S. Stanwyck, R. J. Johnson, and M. H. Pope. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am. J. Sports Med. 14(1):83–87, 1986.PubMedGoogle Scholar
  52. 52.
    Sakane, M., G. A. Livesay, R. J. Fox, T. W. Rudy, T. J. Runco, and S. L. Y. Woo. Relative contribution of the ACL, MCL, and bony contact to the anterior stability of the knee. Knee Surg. Sports Traumatol. Arthrosc. 7(2):93–97, 1999.PubMedGoogle Scholar
  53. 53.
    Sartori, M., D. Farina, and D. G. Lloyd. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15):3613–3621, 2014.PubMedGoogle Scholar
  54. 54.
    Sherbondy, P. S., W. S. Queale, E. G. McFarland, Y. Mizuno, and A. J. Cosgarea. Soleus and gastrocnemius muscle loading decreases anterior tibial translation in anterior cruciate ligament intact and deficient knees. J. Knee Surg. 16(3):152–158, 2003.PubMedGoogle Scholar
  55. 55.
    Torzilli, P. A., X. H. Deng, and R. F. Warren. The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior cruciate ligament-sectioned knee. Am. J. Sports Med. 22(1):105–112, 1994.PubMedGoogle Scholar
  56. 56.
    Ueno, R., T. Ishida, M. Yamanaka, S. Taniguchi, R. Ikuta, M. Samukawa, H. Saito, and H. Tohyama. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study. BMC Musculoskelet. Disord. 18(1):467, 2017.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Walker, P. S., J. S. Rovick, and D. D. Robertson. The effects of knee brace hinge design and placement on joint mechanics. J. Biomech. 21(11):965–1000, 1988.PubMedGoogle Scholar
  58. 58.
    Withrow, T. J., L. J. Huston, E. M. Wojtys, and J. A. Ashton-Miller. The relationship between quadriceps muscle force, knee flexion, and anterior cruciate ligament strain in an in vitro simulated jump landing. Am. J. Sports Med. 34(2):269–274, 2006.PubMedGoogle Scholar
  59. 59.
    Zhou, S., M. J. McKenna, D. L. Lawson, W. E. Morrison, and I. Fairweather. Effects of fatigue and sprint training on electromechanical delay of knee extensor muscles. Eur. J. Appl. Physiol. 72(5–6):410–416, 1996.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryMayo ClinicRochesterUSA
  2. 2.Department of Physical TherapyHigh Point UniversityHigh PointUSA
  3. 3.Division of Sports MedicineCincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations