Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 12, pp 2372–2383 | Cite as

Contribution of Human Hair in Solar UV Transmission in Skin: Implications for Melanoma Development

  • Xiyong HuangEmail author
  • Michael D. Protheroe
  • Ahmed M. Al-Jumaily
  • Sharad P. Paul
  • Andrew N. Chalmers
  • Shuao Wang
  • Juan Diwu
  • Wei Liu
Article

Abstract

Melanoma is the deadliest type of skin cancer with its prevalence on the rise. Recently, the melanocyte stem cells in hair follicles have been identified as the possible origin of melanoma upon exposure to ultraviolet radiation (UVR) through skin. It is hypothesized that colourless vellus hair (predominant in childhood) can serve as an alternative pathway in transmitting these ultraviolet (UV) photons to the stem cells. To investigate this, we have used the CRAIC microspectrophotometer to investigate the optical properties of ‘vellus-like’ hairs and terminal hairs of different colours using UV–VIS–NIR light sources. It was found that the average attenuation coefficient of ‘vellus-like’ hair is significantly lower than that of terminal hair in the UVA (p < 0.0001) and UVB (p < 0.001) wavelength ranges. Next, the optical properties of hairs are applied to simulations for examining their influence on UV transmission into the skin. The results show that the presence of vellus hair would increase the solar UV transmission to the melanocyte stem cell layer significantly. The findings explain why children are particularly vulnerable to sun exposure and the positive correlation found between the incidence of melanoma in adults’ bodies and the number of vellus hairs in these areas.

Keywords

Tissue optics Melanoma Skin cancer Melanocyte stem cells Attenuation coefficient Monte Carlo simulation Vellus hair Medulla Microspectrophotometry Ultraviolet radiation 

Notes

Acknowledgments

The authors would like to acknowledge Soochow University’s Centre of Nuclear Environmental Chemistry in People’s Republic of China for providing the access to and supervision of the use of the CRAIC Microspectrophotometer. In addition, the authors would like to express thanks to Robin Hankin in Auckland University of Technology, New Zealand for providing expert advice on statistical analysis.

References

  1. 1.
    Anderson, R. R., and J. A. Parrish. The optics of human skin. J. Investig. Dermatol. 77:13–19, 1981.CrossRefGoogle Scholar
  2. 2.
    Ash, C., K. Donne, G. Daniel, G. Town, M. Clement, and R. Valentine. Mathematical modeling of the optimum pulse structure for safe and effective photo epilation using broadband pulsed light. J. Appl. Clin. Med. Phys. 13:290–299, 2012.CrossRefGoogle Scholar
  3. 3.
    Ash, C., M. Dubec, K. Donne, and T. Bashford. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci. 32:1909–1918, 2017.CrossRefGoogle Scholar
  4. 4.
    Barrett, J. A., J. A. Siegel, and J. V. Goodpaster. Forensic discrimination of dyed hair color: I. UV-visible microspectrophotometry. J. Forensic Sci. 55:323–333, 2010.CrossRefGoogle Scholar
  5. 5.
    Bashkatov A. N., E. A. Genina, A. V. Volokh, S. A. Murikhina, G. B. Altshuler, and V. V. Tuchin. Optical properties of hair shafts estimated using the digital video microscopic system and inverse Monte Carlo method. In: International Symposium on Biomedical Optics. International Society for Optics and Photonics, 2002, pp. 1–9.Google Scholar
  6. 6.
    Bendit, E., and D. Ross. A technique for obtaining the ultraviolet absorption spectrum of solid keratin. Appl. Spectrosc. 15:103–105, 1961.CrossRefGoogle Scholar
  7. 7.
    Blume-Peytavi, U., D. A. Whiting, and R. M. Trüeb. Hair Growth and Disorders. Berlin: Springer, 2008.CrossRefGoogle Scholar
  8. 8.
    Bruls, W. A., and J. C. Van Der Leun. Forward scattering properties of human epidermal layers. Photochem. Photobiol. 40:231–242, 1984.CrossRefGoogle Scholar
  9. 9.
    Chiou, Y., and U. Blume-Peytavi. Stratum corneum maturation. Skin Pharmacol. Physiol. 17:57–66, 2004.CrossRefGoogle Scholar
  10. 10.
    Diffey, B. L. Sources and measurement of ultraviolet radiation. Methods 28:4–13, 2002.CrossRefGoogle Scholar
  11. 11.
    Fitzpatrick, T. B. The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124:869–871, 1988.CrossRefGoogle Scholar
  12. 12.
    Garcia, A. M. G., C. E. McLaren, and F. L. Meyskens. Melanoma: is hair the root of the problem? Pigment Cell Melanoma Res. 24:110–118, 2011.CrossRefGoogle Scholar
  13. 13.
    Greenwell, M., A. Willner, and P. L. Kirk. Human hair studies. III. Refractive index of crown hair. J. Crim. Law Criminol. 1931–1951(31):746–752, 1941.Google Scholar
  14. 14.
    Huang, X., M. D. Protheroe, A. M. Al-Jumaily, A. N. Chalmers, S. P. Paul, and X. Fu. Simulation of UV power absorbed by follicular stem cells during sun exposure and possible implications for melanoma development. JOSA A 36:628–635, 2019.CrossRefGoogle Scholar
  15. 15.
    Huang, X., M. D. Protheroe, A. M. Al-Jumaily, S. P. Paul, and A. N. Chalmers. Review of human hair optical properties in possible relation to melanoma development. J. Biomed. Opt. 23:050901, 2018.Google Scholar
  16. 16.
    Ito, S., and K. Fujita. Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Anal. Biochem. 144:527–536, 1985.CrossRefGoogle Scholar
  17. 17.
    Kharin, A., B. Varghese, R. Verhagen, and N. Uzunbajakava. Optical properties of the medulla and the cortex of human scalp hair. J. Biomed. Opt. 14:024035, 2009.CrossRefGoogle Scholar
  18. 18.
    Langbein, L., H. Yoshida, S. Praetzel-Wunder, D. A. Parry, and J. Schweizer. The keratins of the human beard hair medulla: the riddle in the middle. J. Investig. Dermatol. 130:55–73, 2010.CrossRefGoogle Scholar
  19. 19.
    Lin, T.-Y., C. C. Dierickx, V. B. Campos, W. A. Farinelli, J. Rosenthal, and R. R. Anderson. Reduction of regrowing hair shaft size and pigmentation after ruby and diode laser treatment. Arch. Dermatol. Res. 292:60–67, 2000.CrossRefGoogle Scholar
  20. 20.
    Menon, I. A., S. Persad, H. F. Haberman, and C. J. Kurian. A comparative study of the physical and chemical properties of melanins isolated from human black and red hair. J. Investig. Dermatol. 80:202–206, 1983.CrossRefGoogle Scholar
  21. 21.
    Miller, A. J., and M. C. Mihm, Jr. Melanoma. N. Engl. J. Med. 355:51–65, 2006.CrossRefGoogle Scholar
  22. 22.
    Moan J. E., Z. Baturaite, A. Dahlback, and A. C. Porojnicu. Ultraviolet radiation and cutaneous malignant melanoma. In: Sunlight, Vitamin D and Skin Cancer. Springer, pp. 359–374, 2014.Google Scholar
  23. 23.
    Moon, H., L. R. Donahue, E. Choi, P. O. Scumpia, W. E. Lowry, J. K. Grenier, J. Zhu, and A. C. White. Melanocyte stem cell activation and translocation initiate cutaneous melanoma in response to UV exposure. Cell Stem Cell 21:665–678. e666, 2017.CrossRefGoogle Scholar
  24. 24.
    Mull, A. N., A. Zolekar, and Y.-C. Wang. Understanding melanocyte stem cells for disease modeling and regenerative medicine applications. Int. J. Mol. Sci. 16:30458–30469, 2015.CrossRefGoogle Scholar
  25. 25.
    Nagase, S., S. Shibuichi, K. Ando, E. Kariya, and N. Satoh. Influence of internal structures of hair fiber on hair appearance. I. Light scattering from the porous structure of the medulla of human hair. J. Cosmet. Sci. 53:89–100, 2002.PubMedGoogle Scholar
  26. 26.
    Nicholls, E. Microspectrophotometry in the study of red hair. Ann. Hum. Genet. 32:15–26, 1968.CrossRefGoogle Scholar
  27. 27.
    Otberg, N., H. Richter, H. Schaefer, U. Blume-Peytavi, W. Sterry, and J. Lademann. Variations of hair follicle size and distribution in different body sites. J. Invest. Dermatol. 122:14–19, 2004.CrossRefGoogle Scholar
  28. 28.
    Randall, V. A. Androgens and hair growth. Dermatol. Ther. 21:314–328, 2008.CrossRefGoogle Scholar
  29. 29.
    Sinclair, R., D. Jolley, R. Mallari, J. Magee, A. Tosti, B. M. Piracinni, C. Vincenzi, R. Happle, J. Ferrando, and R. Grimalt. Morphological approach to hair disorders. J. Investig. Dermatol. Symp. Proc. 8:56–64, 2003.CrossRefGoogle Scholar
  30. 30.
    Sun, F., A. Chaney, R. Anderson, and G. Aguilar. Thermal modeling and experimental validation of human hair and skin heated by broadband light. Lasers Surg. Med. 41:161, 2009.CrossRefGoogle Scholar
  31. 31.
    Van Gemert, M., S. L. Jacques, H. Sterenborg, and W. Star. Skin optics. IEEE Trans. Biomed. Eng. 36:1146–1154, 1989.CrossRefGoogle Scholar
  32. 32.
    Vogt, A., S. Hadam, M. Heiderhoff, H. Audring, J. Lademann, W. Sterry, and U. Blume-Peytavi. Morphometry of human terminal and vellus hair follicles. Exp. Dermatol. 16:946–950, 2007.CrossRefGoogle Scholar
  33. 33.
    Wang, X., R. Dhond, W. Sorin, J. Nelson, S. Newton, and T. Milner. Characterization of human scalp hairs by optical low-coherence reflectometry. Opt. Lett. 20:524–526, 1995.CrossRefGoogle Scholar
  34. 34.
    Wynkoop, E. M. A study of the age correlations of the cuticular scales, medullas, and shaft diameters of human head hair. Am. J. Phys. Anthropol. 13:177–188, 1929.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Institute of Biomedical TechnologiesAuckland University of TechnologyAucklandNew Zealand
  2. 2.Faculty of SurgeryUniversity of AucklandAucklandNew Zealand
  3. 3.Center of Nuclear Environmental ChemistrySoochow UniversityJiangsuPeople’s Republic of China

Personalised recommendations