Annals of Biomedical Engineering

, Volume 47, Issue 12, pp 2356–2371 | Cite as

In Vivo Measurement of Plantar Tissue Characteristics and Its Indication for Foot Modeling

  • Fuhao Mo
  • Junjie Li
  • Zurong YangEmail author
  • Shuangyuan Zhou
  • Michel Behr
Original Article


Plantar heel pain is one of the most common musculoskeletal disorders and generally causing long term discomfort of the patients. The objective of the present study is to combine in vivo experimental measurements and finite element modelling of the foot to investigate the influences of stiffness and thickness variation of individual plantar tissues especially the heel pad on deformation behaviours of the human foot. The stiffness and thickness variance of individuals were measured through supersonic shear wave elastography considering detailed heel pad layers refered to in literature as: dermis, stiffer micro-chamber layer, softer macro-chamber layer. A corresponding foot model with separated heel pad layers was established and used to a sensitivity analysis related to the variance of above-mentioned tissue characteristics. The experimental results show that the average stiffness of the micro-chamber layer ranged from 24.7 (SD 2.4) kPa to 18.8 (SD 3.5) kPa with the age group increasing from 20–29 years old to 60–69 years old, while the average macro-chamber stiffness is 10.6 (SD 1.5) kPa that appears to slightly decrease with the increasing age. Both plantar soft tissue stiffness and thickness of male were generally larger than that of female. The numerical simulation results show that the variance of heel pad strain level can reach 27.5% due to the effects of stiffness and thickness change of the plantar tissues. Their influences on the calcaneus stress and plantar pressure were also significant. This indicates that the most appreciate way to establish a personalized foot model needs to consider the difference of both individual foot anatomic geometry and plantar soft tissue material properties.


Biomechanics Foot Heel pad Ultrasound Elastography Finite element modeling 



This study was supported by National Natural Science Foundation of China (Grant Nos. 51875187, 51621004), and Hunan Province Science and Technology Plan (Grant No. 2019JJ40021).


  1. 1.
    Ahanchian, N., C. J. Nester, D. Howard, L. Ren, and D. Parker. Estimating the material properties of heel pad sub-layers using inverse finite element analysis. Med. Eng. Phys. 40:11, 2016.PubMedGoogle Scholar
  2. 2.
    Bandholm, T., L. Boysen, S. Haugaard, M. K. Zebis, and J. Bencke. Foot medial longitudinal-arch deformation during quiet standing and gait in subjects with medial tibial stress syndrome. J. Foot Ankle Surg. 47(2):89–95, 2008.PubMedGoogle Scholar
  3. 3.
    Bercoff, J., A. Criton, C. C. Bacrie, J. Souquet, M. Tanter, J. L. Gennisson, T. Deffieux, M. Fink, V. Juhan, and A. Colavolpe. ShearWave™ Elastography A new real time imaging mode for assessing quantitatively soft tissue viscoelasticity. Ultrasonics Symposium 2009Google Scholar
  4. 4.
    Birtane, M., and H. Tuna. The evaluation of plantar pressure distribution in obese and non-obese adults. Clin. Biomech. 19(10):1055–1059, 2004.Google Scholar
  5. 5.
    Bucki, M., V. Luboz, A. Perrier, E. Champion, B. Diot, N. Vuillerme, and Y. Payan. Clinical workflow for personalized foot pressure ulcer prevention. Med. Eng. Phys. 38(9):S135045331630073X, 2016.Google Scholar
  6. 6.
    Bus, S. A. Ground reaction forces and kinematics in distance running in older-aged men. Med. Sci. Sports Exerc. 35(7):1167–1175, 2003.PubMedGoogle Scholar
  7. 7.
    Buschmann, W. R., M. H. Jahss, F. Kummer, P. Desai, R. O. Gee, and J. L. Ricci. Histology and histomorphometric analysis of the normal and atrophic heel fat pad. Foot Ankle Int. 16(5):254–258, 1995.PubMedGoogle Scholar
  8. 8.
    Campanelli, V., F. Massimiliano, F. Niccolò, C. Alessio, P. Antonio, and S. Andrea. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study. J. Anat. 219(5):622–631, 2011.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Cavanagh, P. R. Plantar soft tissue thickness during ground contact in walking. J. Biomech. 32(6):623–628, 1999.PubMedGoogle Scholar
  10. 10.
    Cavanagh, P. R., E. Morag, A. J. Boulton, M. J. Young, K. T. Deffner, and S. E. Pammer. The relationship of static foot structure to dynamic foot function. J. Biomech. 30:243–250, 1997.PubMedGoogle Scholar
  11. 11.
    Cavanagh, P. R., M. M. Rodgers, and A. Iiboshi. Pressure distribution under symptom-free feet during barefoot standing. Foot Ankle 7(5):262–276, 1987.PubMedGoogle Scholar
  12. 12.
    Chatzistergos, P. E., R. Naemi, and N. Chockalingam. A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear. Med. Eng. Phys. 37(6):531–538, 2015.PubMedGoogle Scholar
  13. 13.
    Chen, W. M., and P. V. S. Lee. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads. Comput Method Biomech. 18(14):1582–1595, 2015.Google Scholar
  14. 14.
    Cheung, T. M., M. Zhang, and K. N. An. Effect of Achilles tendon loading on plantar fascia tension in the standing foot. Clin. Biomech. 21(2):194–203, 2006.Google Scholar
  15. 15.
    Cheung, J. T., M. Zhang, A. K. Leung, and Y. B. Fan. Three-dimensional finite element analysis of the foot during standing—a material sensitivity study. J. Biomech. 38(5):1045–1054, 2005.PubMedGoogle Scholar
  16. 16.
    Chih-Chin, H., T. Wen-Chung, W. Chung-Li, P. Sun-Hua, S. Yio-Wha, and C. Yu-Shuan. Microchambers and macrochambers in heel pads: are they functionally different? J. Appl. Physiol. 102(6):2227–2231, 2007.Google Scholar
  17. 17.
    Cotchett, M. P., G. Whittaker, and B. Erbas. Psychological variables associated with foot function and foot pain in patients with plantar heel pain. Clin. Rheumatol. 34(5):957–964, 2015.PubMedGoogle Scholar
  18. 18.
    Erdemir, A., M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. J. Biomech. 39(7):1279–1286, 2006.PubMedGoogle Scholar
  19. 19.
    Gangming, L., V. L. Houston, G. M. Anne, A. C. Beattie, and T. Chaiya. Finite element analysis of heel pad with insoles. J. Biomech. 44(8):1559–1565, 2011.Google Scholar
  20. 20.
    Gefen, A. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Med. Eng. Phys. 25(6):491–499, 2003.PubMedGoogle Scholar
  21. 21.
    Genevieve, S., H. B. Menz, and N. Lesley. Age-related differences in foot structure and function. Gait Posture 26(1):0–75, 2007.Google Scholar
  22. 22.
    Grigoriadis, G., N. Newell, D. Carpanen, A. Christou, A. M. J. Bull, and S. D. Masouros. Material properties of the heel fat pad across strain rates. J. Mech. Behav. Biomed. Mater. 65:398–407, 2017.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hsu, C. C., C. P. Chen, S. C. Lin, W. C. Tsai, H. T. Liu, Y. C. Lin, H. J. Lee, and W. P. Chen. Determination of the augmentation effects of hyaluronic acid on different heel structures in amputated lower limbs of diabetic patients using ultrasound elastography. Ultrasound Med. Biol. 38(6):943–952, 2012.PubMedGoogle Scholar
  24. 24.
    Hsu, C. C., W. C. Tsai, P. C. Chen, Y. W. Shau, C. L. Wang, J. L. Chen, and K. J. Chang. Effects of aging on the plantar soft tissue properties under the metatarsal heads at different impact velocities. Ultrasound Med. Biol. 31(10):1423–1429, 2005.PubMedGoogle Scholar
  25. 25.
    Hsu, C. C., W. C. Tsai, T. Y. Hsiao, F. Y. Tseng, Y. W. Shau, C. L. Wang, and S. C. Lin. Diabetic effects on microchambers and macrochambers tissue properties in human heel pads. Clin. Biomech. 24(8):682–686, 2009.Google Scholar
  26. 26.
    Jacob, S., and M. K. Patil. Stress analysis in three-dimensional foot models of normal and diabetic neuropathy. Front. Med. Biol. Eng. 9(3):211–227, 1999.PubMedGoogle Scholar
  27. 27.
    Jahss, M. H., J. D. Michelson, P. Desai, R. Kaye, F. Kummer, W. Buschman, F. Watkins, and S. Reich. Investigations into the fat pads of the sole of the foot: anatomy and histology. Foot Ankle 13(5):233–242, 1992.PubMedGoogle Scholar
  28. 28.
    Jérémy, B., T. Mickael, and F. Mathias. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE T. Ultrason. FERR. 51(4):396–409, 2004.Google Scholar
  29. 29.
    Kwan, L. C., Y. P. Zheng, and L. Y. Cheing. The effect of aging on the biomechanical properties of plantar soft tissues. Clin. Biomech. 25(6):601–605, 2010.Google Scholar
  30. 30.
    Lin, C. Y., C. C. Lin, Y. C. Chou, P. Y. Chen, and C. L. Wang. Heel pad stiffness in plantar heel pain by shear wave elastography. Ultrasound Med. Biol. 41(11):2890–2898, 2015.PubMedGoogle Scholar
  31. 31.
    Linder-Ganz, E., N. Shabshin, Y. Itzchak, Z. Yizhar, I. Siev-Ner, and A. Gefen. Strains and stresses in sub-dermal tissues of the buttocks are greater in paraplegics than in healthy during sitting. J. Biomech. 41(3):567–580, 2008.PubMedGoogle Scholar
  32. 32.
    Luboz, V., A. Perrier, M. Bucki, B. Diot, F. Cannard, N. Vuillerme, and Y. Payan. Influence of the calcaneus shape on the risk of posterior heel ulcer using 3D patient-specific biomechanical modeling. Ann. Biomed. Eng. 43(2):1–11, 2014.Google Scholar
  33. 33.
    McPoil, T. G., R. L. Martin, M. W. Cornwall, D. K. Wukich, J. J. Irrgang, and J. J. Godges. Heel pain—plantar fasciitis: clinical practice guildelines linked to the international classification of function, disability, and health from the orthopaedic section of the American Physical Therapy Association. J. Orthop. Sports Phys. Ther. 85A:872–877, 2008.Google Scholar
  34. 34.
    MillerYoung, J. E., N. A. Duncan, and G. Baroud. Material properties of the human calcaneal fat pad in compression: experiment and theory. J. Biomech. 35(12):1523–1531, 2002.Google Scholar
  35. 35.
    Mo, F., F. Li, M. Behr, Z. Xiao, G. J. Zhang, and X. P. Du. A lower limb-pelvis finite element model with 3D active muscles. Ann. Biomed. Eng. 46(1):86–96, 2018.PubMedGoogle Scholar
  36. 36.
    Nakamura, S., and R. D. Crowninshield. An analysis of soft tissue loading in the foot. J. Biomech. 14(7):492, 1981.Google Scholar
  37. 37.
    Prichasuk, S. The heel pad in plantar heel pain. J. Bone Jt. Surg. Br. 76(1):140, 1994.Google Scholar
  38. 38.
    Riddle, D. L., M. Pulisic, P. Pidcoe, and R. E. Johnson. Risk factors for plantar fasciitis: a matched case–control study. J. Bone Joint Surg. Am. 85A:872–877, 2003.Google Scholar
  39. 39.
    Rome, K. Mechanical properties of the heel pad: current theory and review of the literature. Foot. 8(4):179–185, 1998.Google Scholar
  40. 40.
    Siegler, S., J. Block, and C. D. Schneck. The mechanical characteristics of the collateral ligaments of the human ankle joint. Foot Ankle. 8(5):234, 1988.PubMedGoogle Scholar
  41. 41.
    Snehal, C., J. P. Halloran, A. J. V. D. Bogert, and E. Ahmet. A three-dimensional inverse finite element analysis of the heel pad. J. Biomech. Eng. 134(3):031002, 2012.Google Scholar
  42. 42.
    Tsai, W. C., C. L. Wang, T. C. Hsu, F. J. Hsieh, and F. T. Tang. The mechanical properties of the heel pad in unilateral plantar heel pain syndrome. Foot Ankle Int. 20(10):663–668, 1999.PubMedGoogle Scholar
  43. 43.
    Wang, C. L., C. Y. Lin, P. Y. Chen, Y. W. Shau, and H. C. Tai. Spatial-dependent mechanical properties of the heel pad by shear wave elastography. Ultrasound Med. Biol. 43:S89–S90, 2017.Google Scholar
  44. 44.
    Williams, D. S., and I. S. McClay. Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys. Ther. 80(9):864–871, 2000.PubMedGoogle Scholar
  45. 45.
    Wong, D. W., W. Niu, Y. Wang, and M. Zhang. Finite element analysis of foot and ankle impact injury: risk evaluation of calcaneus and talus fracture. PLoS ONE 11(4):e0154435, 2016.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Wren, T. A. L., S. A. Yerby, G. S. Beaupré, and D. R. Carter. Mechanical properties of the human achilles tendon. Clin. Biomech. 16(3):245–251, 2001.Google Scholar
  47. 47.
    Wright, D. G., and D. C. Rennels. A study of elastic properties of plantar fascia. J. Bone Jt. Surg. Am. Vol. 46(1–4):482, 1964.Google Scholar
  48. 48.
    Wu, C. H., C. Y. Lin, M. Y. Hsiao, Y. H. Cheng, W. S. Chen, and T. G. Wang. Altered stiffness of microchamber and macrochamber layers in the aged heel pad: Shear wave ultrasound elastography evaluation. J. Formos. Med. Assoc. 117(5):S0929664617301511, 2017.Google Scholar
  49. 49.
    Yak-Nam, W., L. Kara, and W. R. Ledoux. Histomorphological evaluation of diabetic and non-diabetic plantar soft tissue. Foot Ankle Int. 32(08):802–810, 2011.Google Scholar
  50. 50.
    Zhang, M., and A. F. Mak. In vivo friction properties of human skin. Prosthet. Orthot. Int. 23(2):135, 1999.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Design and Manufacture for Vehicle BodyHunan UniversityChangshaChina
  2. 2.Department of Ultrasound, The Second Xiangya HospitalCentral South UniversityChangshaChina
  3. 3.Aix-Marseille University, IFSTTAR, LBA UMRT24MarseilleFrance
  4. 4.Department of Radiology, Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations