Annals of Biomedical Engineering

, Volume 47, Issue 11, pp 2322–2333 | Cite as

Closed Loop Control of an MR-Conditional Robot with Wireless Tracking Coil Feedback

  • Yue ChenEmail author
  • Joseph Howard
  • Isuru Godage
  • Saikat Sengupta


This paper presents a hardware and software system to implement the task space control of an MR-conditional robot by integrating inductively coupled wireless coil based tracking feedback into the control loop. The main motivation of this work is to increase the accuracy performance and address the system uncertainties in the practical scenarios. We present the MR-conditional robot hardware design, wireless tracking method, and custom-designed communication software for real-time tracking data transfer. Based on these working principles, we fabricate the robot platform and evaluate the complete system with respect to various performance indices, i.e. data communication speed, targeting accuracy, tracking coil resolution, image quality, temperature variation, and task space control accuracy for static and dynamic targeting inside MRI scanner. The in-scanner targeting results show that the MR-conditional robot with wireless tracking coil feedback achieves the targeting error of 0.17 ± 0.08 mm, while the error calculated from the joint space optical encoder feedback is 0.68 ± 0.19 mm.


MR-conditional robot Wireless tracking Robot control 



The authors would like to acknowledge Eric Barth, Robert Webster, and Edward B Welch for their support.

Conflict of interest

All authors declared that they have no conflict of interest.


  1. 1.
    Anastasiadis, A. G., M. P. Lichy, U. Nagele, M. A. Kuczyk, A. S. Merseburger, J. Hennenlotter, S. Corvin, K.-D. Sievert, C. D. Claussen, and A. Stenzl. MRI-guided biopsy of the prostate increases diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS biopsies. Eur. Urol. 50:738–749, 2006.CrossRefGoogle Scholar
  2. 2.
    Archer, D. G., and P. Wang. The dielectric constant of water and Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19:371–411, 1990.CrossRefGoogle Scholar
  3. 3.
    Chen, Y., I. S. Godage, S. Sengupta, C. L. Liu, K. D. Weaver, and E. J. Barth. MR-conditional steerable needle robot for intracerebral hemorrhage removal. Int. J. Comput. Assist Radiol. Surg. 14:105–115, 2018.CrossRefGoogle Scholar
  4. 4.
    Chen, Y., I. S. Godage, Z. T. H. Tse, R. J. Webster, and E. J. Barth. Characterization and control of a pneumatic motor for MR-conditional robotic applications. IEEE/ASME Trans. Mechatron. 22:2780–2789, 2017.CrossRefGoogle Scholar
  5. 5.
    Chen Y., M. E. Poorman, D. B. Comber, E. B. Pitt, C. Liu, I. S. Godage, H. Yu, W. A. Grissom, E. J. Barth and R. J. Webster. Treating epilepsy via thermal ablation: initial experiments with an MRI-guided concentric tube robot. In: 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017, pp. V001T002A002-V001T002A002Google Scholar
  6. 6.
    Chen, Y., A. Squires, R. Seifabadi, S. Xu, H. K. Agarwal, M. Bernardo, P. A. Pinto, P. Choyke, B. Wood, and Z. T. H. Tse. Robotic system for MRI-guided focal laser ablation in the prostate. IEEE/ASME Trans. Mechatron. 22:107–114, 2017.CrossRefGoogle Scholar
  7. 7.
    Chen, Y., W. Wang, E. J. Schmidt, K.-W. Kwok, A. N. Viswanathan, R. Cormack, and Z. T. H. Tse. Design and fabrication of MR-tracked metallic stylet for gynecologic brachytherapy. IEEE/ASME Trans. Mechatron. 21:956, 2016.CrossRefGoogle Scholar
  8. 8.
    Chen, Y., S. Xu, A. Squires, R. Seifabadi, I. B. Turkbey, P. Pinto, P. Choyke, B. Wood, and Z. T. H. Tse. MRI guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE Trans. Biomed. Eng. 65:1434–1442, 2017.CrossRefGoogle Scholar
  9. 9.
    Chen, Y., T. T. Zion, W. Wang, R. Y. Kwong, W. G. Stevenson, and E. J. Schmidt. Intra-cardiac MR imaging & MR-tracking catheter for improved MR-guided EP. J. Cardiovasc. Magn. Reson. 17:P237, 2015.CrossRefGoogle Scholar
  10. 10.
    F2503 A. Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. 2005.Google Scholar
  11. 11.
    Fichtinger G., A. Krieger, R. C. Susil, A. Tanacs, L. L. Whitcomb and E. Atalar. Transrectal prostate biopsy inside closed MRI scanner with remote actuation, under real-time image guidance. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2002, pp. 91–98.Google Scholar
  12. 12.
    Fischer, H., B. Vogel, and A. Welle. Applications of shape memory alloys in medical instruments. Minim. Invasive Ther. Allied Technol. 13:248–253, 2004.CrossRefGoogle Scholar
  13. 13.
    Fram, E. K., R. J. Herfkens, G. A. Johnson, G. H. Glover, J. P. Karis, A. Shimakawa, T. G. Perkins, and N. J. Pelc. Rapid calculation of T1 using variable flip angle gradient refocused imaging. Magn. Reson. Imaging 5:201–208, 1987.CrossRefGoogle Scholar
  14. 14.
    Hata, N., J. Tokuda, S. Hurwitz, and S. Morikawa. MRI-compatible manipulator with remote-center-of-motion control. J. Magn. Reson. Imaging 27:1130–1138, 2008.CrossRefGoogle Scholar
  15. 15.
    Hazle, J. D., C. J. Diederich, M. Kangasniemi, R. E. Price, L. E. Olsson, and R. J. Stafford. MRI-guided thermal therapy of transplanted tumors in the canine prostate using a directional transurethral ultrasound applicator. J. Magn. Reson. Imaging 15:409–417, 2002.CrossRefGoogle Scholar
  16. 16.
    Jerzewski, A., P. M. Pattynama, P. Steendijk, J. Doornbos, A. de Roos, and J. Baan. Development of an MRI-compatible catheter for pacing the heart: Initial in vitro and in vivo results. J. Magn. Reson. Imaging 6:948–949, 1996.CrossRefGoogle Scholar
  17. 17.
    Kandadai, M. A., J. L. Raymond, and G. J. Shaw. Comparison of electrical conductivities of various brain phantom gels: developing a ‘brain gel model’. Mater. Sci. Eng. C 32:2664–2667, 2012.CrossRefGoogle Scholar
  18. 18.
    Kwok, K.-W., K.-H. Lee, Y. Chen, W. Wang, Y. Hu, G. C. Chow, H. S. Zhang, W. G. Stevenson, R. Y. Kwong, and W. Luk. Interfacing fast multi-phase cardiac image registration with MRI-based catheter tracking for MRI-guided electrophysiological ablative procedures. Am. Heart Assoc. 130:A18568, 2014.Google Scholar
  19. 19.
    Liberman, L., N. Bracero, E. Morris, C. Thornton, and D. D. Dershaw. MRI-guided 9-gauge vacuum-assisted breast biopsy: initial clinical experience. Am. J. Roentgenol. 185:183–193, 2005.CrossRefGoogle Scholar
  20. 20.
    Masamune, K., E. Kobayashi, Y. Masutani, M. Suzuki, T. Dohi, H. Iseki, and K. Takakura. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guided Surg. 1:242–248, 1995.CrossRefGoogle Scholar
  21. 21.
    Meiboom, S., and D. Gill. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 29:688–691, 1958.CrossRefGoogle Scholar
  22. 22.
    Monfaredi, R., I. Iordachita, E. Wilson, R. Sze, K. Sharma, A. Krieger, S. Fricke, and K. Cleary. Development of a shoulder-mounted robot for MRI-guided needle placement: phantom study. Int. J. Comput. Assist. Radiol. Surg. 13:1829–1841, 2018.CrossRefGoogle Scholar
  23. 23.
    Mueller, P., D. Stark, J. Simeone, S. Saini, R. Butch, R. Edelman, J. Wittenberg, and J. Ferrucci, Jr. MR-guided aspiration biopsy: needle design and clinical trials. Radiology 161:605–609, 1986.CrossRefGoogle Scholar
  24. 24.
    Reddy, V. Y., Z. J. Malchano, G. Holmvang, E. J. Schmidt, A. d’Avila, C. Houghtaling, R. C. Chan, and J. N. Ruskin. Integration of cardiac magnetic resonance imaging with three-dimensional electroanatomic mapping to guide left ventricular catheter manipulation: feasibility in a porcine model of healed myocardial infarction. J. Am. Coll. Cardiol. 44:2202–2213, 2004.CrossRefGoogle Scholar
  25. 25.
    Seifert, V., M. Zimmermann, C. Trantakis, H.-E. Vitzthum, K. Kühnel, A. Raabe, F. Bootz, J.-P. Schneider, F. Schmidt, and J. Dietrich. Open MRI-guided neurosurgery. Acta Neurochir. 141:455–464, 1999.CrossRefGoogle Scholar
  26. 26.
    Sengupta, S., S. Tadanki, J. C. Gore, and E. B. Welch. Prospective real-time head motion correction using inductively coupled wireless NMR probes. Magn. Reson. Med. 72:971–985, 2014.CrossRefGoogle Scholar
  27. 27.
    Stanisz, G. J., E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham, M. J. Bronskill, and R. M. Henkelman. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn. Reson. Med. 54:507–512, 2005.CrossRefGoogle Scholar
  28. 28.
    state of the art. Stradiotti P., A. Curti, G. Castellazzi and A. Zerbi. Metal-related artifacts in instrumented spine. Techniques for reducing artifacts in CT and MRI. Eur. Spine J. 18:102–108, 2009.CrossRefGoogle Scholar
  29. 29.
    Stoianovici, D., C. Kim, D. Petrisor, C. Jun, S. Lim, M. W. Ball, A. Ross, K. J. Macura, and M. E. Allaf. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE/ASME Trans. Mechatron. 22:115–126, 2017.CrossRefGoogle Scholar
  30. 30.
    Sutherland G. R., P. B. McBeth and D. F. Louw. NeuroArm: an MR compatible robot for microsurgery. In: International Congress Series. Elsevier, 2003, pp. 504–508.Google Scholar
  31. 31.
    Wang, W., A. N. Viswanathan, A. L. Damato, Y. Chen, Z. Tse, L. Pan, J. Tokuda, R. T. Seethamraju, C. L. Dumoulin, and E. J. Schmidt. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Med. Phys. 42:7114–7121, 2015.CrossRefGoogle Scholar
  32. 32.
    Xiao, X., Z. Huang, M. A. Rube, and A. Melzer. Investigation of active tracking for robotic arm assisted magnetic resonance guided focused ultrasound ablation. Int. J. Med. Robot. Comput. Assisted Surg. 13:e1768, 2017.CrossRefGoogle Scholar
  33. 33.
    Yang, B., U.-X. Tan, A. McMillan, R. Gullapalli, and J. P. Desai. Design and implementation of a pneumatically-actuated robot for breast biopsy under continuous MRI. New York: Springer, pp. 674–679, 2011.Google Scholar
  34. 34.
    Yarnykh, V. L. Actual flip-angle imaging in the pulsed steady state: a method for rapid three-dimensional mapping of the transmitted radiofrequency field. Magn. Reson. Med. 57:192–200, 2007.CrossRefGoogle Scholar
  35. 35.
    Yutzy, S. R., and J. L. Duerk. Pulse sequences and system interfaces for interventional and real-time MRI. J. Magn. Reson. Imaging 27:267–275, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.School of ComputingDePaul UniversityChicagoUSA
  4. 4.Department of RadiologyVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations