Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 11, pp 2258–2270 | Cite as

Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics

  • Zhenglun Alan Wei
  • Connor Huddleston
  • Phillip M. Trusty
  • Shelly Singh-Gryzbon
  • Mark A. Fogel
  • Alessandro Veneziani
  • Ajit P. YoganathanEmail author
Article
  • 205 Downloads

Abstract

Computational fluid dynamic (CFD) simulations are widely utilized to assess Fontan hemodynamics that are related to long-term complications. No previous studies have systemically investigated the effects of using different inlet velocity profiles in Fontan simulations. This study implements real, patient-specific velocity profiles for numerical assessment of Fontan hemodynamics using CFD simulations. Four additional, artificial velocity profiles were used for comparison: (1) flat, (2) parabolic, (3) Womersley, and (4) parabolic with inlet extensions [to develop flow before entering the total cavopulmonary connection (TCPC)]. The differences arising from the five velocity profiles, as well as discrepancies between the real and each of the artificial velocity profiles, were quantified by examining clinically important metrics in TCPC hemodynamics: power loss (PL), viscous dissipation rate (VDR), hepatic flow distribution, and regions of low wall shear stress. Statistically significant differences were observed in PL and VDR between simulations using real and flat velocity profiles, but differences between those using real velocity profiles and the other three artificial profiles did not reach statistical significance. These conclusions suggest that the artificial velocity profiles (2)–(4) are acceptable surrogates for real velocity profiles in Fontan simulations, but parabolic profiles are recommended because of their low computational demands and prevalent applicability.

Keywords

Computational fluid dynamics Fontan hemodynamics Inlet velocity profiles 

Notes

Acknowledgments

This study was supported by the National Heart, Lung, and Blood Institute Grants HL67622 and HL098252 and the Petit Undergraduate Research Scholarship from the Georgia Institute of Technology. Also, the authors acknowledge the use of ANSYS software which was provided through an Academic Partnership between ANSYS, Inc. and the Cardiovascular Fluid Mechanics Lab at the Georgia Institute of Technology.

References

  1. 1.
    Arbia, G., I. Vignon-Clementel, T. Y. Hsia, and J.-F. Gerbeau. Modified Navier–Stokes equations for the outflow boundary conditions in hemodynamics. Eur. J. Mech. B 60:175–188, 2016.CrossRefGoogle Scholar
  2. 2.
    Bertoglio, C., A. Caiazzo, Y. Bazilevs, M. Braack, M. Esmaily, V. Gravemeier, A. L. Marsden, O. Pironneau, I. E. Vignon-Clementel, and W. A. Wall. Benchmark problems for numerical treatment of backflow at open boundaries. Int. J. Numer. Methods Biomed. Eng. 2018.  https://doi.org/10.1002/cnm.2918.CrossRefGoogle Scholar
  3. 3.
    Boutsianis, E., S. Gupta, K. Boomsma, and D. Poulikakos. Boundary conditions by Schwarz-Christoffel mapping in anatomically accurate hemodynamics. Ann. Biomed. Eng. 36:2068–2084, 2008.CrossRefGoogle Scholar
  4. 4.
    Campbell, I. C., J. Ries, S. S. Dhawan, A. A. Quyyumi, W. R. Taylor, and J. N. Oshinski. Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134:051001, 2012.CrossRefGoogle Scholar
  5. 5.
    Cheng, A. L., C. M. Takao, R. B. Wenby, H. J. Meiselman, J. C. Wood, and J. A. Detterich. Elevated low-shear blood viscosity is associated with decreased pulmonary blood flow in children with univentricular heart defects. Pediatr. Cardiol. 37:789–801, 2016.CrossRefGoogle Scholar
  6. 6.
    Formaggia, L., J. F. Gerbeau, F. Nobile, and A. Quarteroni. Numerical treatment of defective boundary conditions for the Navier–Stokes equations. SIAM J. Numer. Anal. 40:376–401, 2002.CrossRefGoogle Scholar
  7. 7.
    Hardman, D., S. I. Semple, J. M. J. Richards, and P. R. Hoskins. Comparison of patient-specific inlet boundary conditions in the numerical modelling of blood flow in abdominal aortic aneurysm disease. Int. J. Numer. Methods Biomed. Eng. 29:165–178, 2013.CrossRefGoogle Scholar
  8. 8.
    Jansen, I. G. H., J. J. Schneiders, W. V. Potters, P. Van Ooij, R. Van Den Berg, E. Van Bavel, H. A. Marquering, and C. B. L. M. Majoie. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. Am. J. Neuroradiol. 35:1543–1548, 2014.CrossRefGoogle Scholar
  9. 9.
    Khiabani, R. H., K. K. Whitehead, D. Han, M. Restrepo, E. Tang, J. Bethel, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart 101:139–143, 2015.CrossRefGoogle Scholar
  10. 10.
    Long, C. C., M. C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluid–structure interaction simulations of the Fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28:513–527, 2012.CrossRefGoogle Scholar
  11. 11.
    Malek, A. M., S. L. Alper, and S. Izumo. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042, 1999.CrossRefGoogle Scholar
  12. 12.
    Marzo, A., P. Singh, I. Larrabide, A. Radaelli, S. Coley, M. Gwilliam, I. D. Wilkinson, P. Lawford, P. Reymond, U. Patel, A. Frangi, and D. R. Hose. Computational hemodynamics in cerebral aneurysms: the effects of modeled versus measured boundary conditions. Ann. Biomed. Eng. 39:884–896, 2011.CrossRefGoogle Scholar
  13. 13.
    McGinty, S., S. McKee, and R. McDermott. Analytic solutions of Newtonian and non-Newtonian pipe flows subject to a general time-dependent pressure gradient. J. Non-Newton. Fluid Mech. 162:54–77, 2009.CrossRefGoogle Scholar
  14. 14.
    Morbiducci, U., R. Ponzini, D. Gallo, C. Bignardi, and G. Rizzo. Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J. Biomech. 46:102–109, 2013.CrossRefGoogle Scholar
  15. 15.
    Pandurangi, U. M., M. J. Shah, R. Murali, and K. M. Cherian. Rapid onset of pulmonary arteriovenous malformations after cavopulmonary anastomosis. Ann. Thorac. Surg. 68:237–239, 1999.CrossRefGoogle Scholar
  16. 16.
    Pant, S., B. Fabrèges, J. F. Gerbeau, and I. E. Vignon-Clementel. A methodological paradigm for patient-specific multi-scale CFD simulations: from clinical measurements to parameter estimates for individual analysis. Int. J. Numer. Methods Biomed. Eng. 30:1614–1648, 2014.CrossRefGoogle Scholar
  17. 17.
    Pekkan, K., D. D. Zélicourt, L. Ge, F. Sotiropoulos, D. Frakes, M. A. Fogel, and A. P. Yoganathan. Physics-driven CFD modeling of complex anatomical cardiovascular flows—a TCPC case study. Ann. Biomed. Eng. 33:284–300, 2005.CrossRefGoogle Scholar
  18. 18.
    Piskin, S., and M. Serdar Celebi. Analysis of the effects of different pulsatile inlet profiles on the hemodynamical properties of blood flow in patient specific carotid artery with stenosis. Comput. Biol. Med. 43:717–728, 2013.CrossRefGoogle Scholar
  19. 19.
    Ponzini, R., C. Vergara, A. Redaelli, and A. Veneziani. Reliable CFD-based estimation of flow rate in haemodynamics measures. Ultrasound Med. Biol. 32:1545–1555, 2006.CrossRefGoogle Scholar
  20. 20.
    Quarteroni, A., A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302:193–252, 2016.CrossRefGoogle Scholar
  21. 21.
    Raghav, V., A. J. Barker, D. Mangiameli, L. Mirabella, M. Markl, and A. P. Yoganathan. Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. J. Magn. Reson. Imaging 47:246–254, 2018.CrossRefGoogle Scholar
  22. 22.
    Srivastava, D., T. Preminger, J. E. Lock, V. Mandell, J. F. Keane, J. E. Mayer, H. Kozakewich, and P. J. Spevak. Hepatic venous blood and development of pulmonary arteriovenous malformation in congenital heart disease. Circulation 92:1217–1222, 1995.CrossRefGoogle Scholar
  23. 23.
    Tang, T. L. E. Effect of Geometry, Respiration and Vessel Deformability on Fontan Hemodynamics: A Numerical Investigation. Georgia Institute of Technology, 2015.Google Scholar
  24. 24.
    Tang, E., Z. A. Wei, P. M. Trusty, K. K. Whitehead, L. Mirabella, A. Veneziani, M. A. Fogel, and A. P. Yoganathan. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning. J. Biomech. 82:87–95, 2019.CrossRefGoogle Scholar
  25. 25.
    Tang, E., Z. A. Wei, K. K. Whitehead, R. H. Khiabani, M. Restrepo, L. Mirabella, J. Bethel, S. M. Paridon, B. S. Marino, M. A. Fogel, and A. P. Yoganathan. Effect of Fontan geometry on exercise haemodynamics and its potential implications. Heart 103:1806–1812, 2017.CrossRefGoogle Scholar
  26. 26.
    Taylor, C. A., T. J. R. Hughes, and C. K. Zarins. Finite element modeling of blood flow in arteries. Comput. Methods Appl. Mech. Eng. 158:155–196, 1998.CrossRefGoogle Scholar
  27. 27.
    Trusty, P. M., T. C. Slesnick, Z. A. Wei, J. Rossignac, K. R. Kanter, M. A. Fogel, and A. P. Yoganathan. Fontan surgical planning: previous accomplishments, current challenges, and future directions. J. Cardiovasc. Transl. Res. 11:133–144, 2018.CrossRefGoogle Scholar
  28. 28.
    Van De Bruaene, A., G. Claessen, A. La Gerche, E. Kung, A. Marsden, P. De Meester, S. Devroe, J. Bogaert, P. Claus, H. Heidbuchel, W. Budts, and M. Gewillig. Effect of respiration on cardiac filling at rest and during exercise in Fontan patients: a clinical and computational modeling study. IJC Heart Vasc. 9:100–108, 2015.CrossRefGoogle Scholar
  29. 29.
    Veneziani, A., and C. Vergara. Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Methods Fluids 47:803–816, 2005.CrossRefGoogle Scholar
  30. 30.
    Veneziani, A., and C. Vergara. An approximate method for solving incompressible Navier–Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196:1685–1700, 2007.CrossRefGoogle Scholar
  31. 31.
    Wei, Z. A., M. Tree, P. M. Trusty, W. Wu, S. Singh-Gryzbon, and A. Yoganathan. The advantages of viscous dissipation rate over simplified power loss as a Fontan hemodynamic metric. Ann. Biomed. Eng. 46:404–416, 2018.CrossRefGoogle Scholar
  32. 32.
    Wei, Z. A., P. M. Trusty, M. Tree, C. M. Haggerty, E. Tang, M. Fogel, and A. P. Yoganathan. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? J. Biomech. 50:172–179, 2017.CrossRefGoogle Scholar
  33. 33.
    Wei, Z., K. K. Whitehead, R. H. Khiabani, M. Tree, E. Tang, S. M. Paridon, M. A. Fogel, and A. P. Yoganathan. Respiratory effects on Fontan circulation during rest and exercise using real-time cardiac magnetic resonance imaging. Ann. Thorac. Surg. 101:1818–1825, 2016.CrossRefGoogle Scholar
  34. 34.
    Whitehead, K. K., K. Pekkan, H. D. Kitajima, S. M. Paridon, A. P. Yoganathan, and M. A. Fogel. Nonlinear power loss during exercise in single-ventricle patients after the Fontan: insights from computational fluid dynamics. Circulation 116:I-165–I-171, 2007.CrossRefGoogle Scholar
  35. 35.
    Womersley, J. R. Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. Physiology 127:553–563, 1955.CrossRefGoogle Scholar
  36. 36.
    Yang, W., F. P. Chan, V. M. Reddy, A. L. Marsden, and J. A. Feinstein. Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. J. Thorac. Cardiovasc. Surg. 149:247–255, 2015.CrossRefGoogle Scholar
  37. 37.
    Youssefi, P., A. Gomez, C. Arthurs, R. Sharma, M. Jahangiri, and C. A. Figueroa. Impact of patient-specific inflow velocity profile on hemodynamics of the thoracic aorta. J. Biomech. Eng. 140:1–14, 2018.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Wallace H. Coulter School of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  4. 4.Department of Mathematics, Department of Computer ScienceEmory UniversityAtlantaUSA

Personalised recommendations