Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 12, pp 2431–2488 | Cite as

Human Factors and User Experience Issues with Ventricular Assist Device Wearable Components: A Systematic Review

  • Jessica Lea DunnEmail author
  • Erez Nusem
  • Karla Straker
  • Shaun Gregory
  • Cara Wrigley
Article

Abstract

Ventricular Assist Devices (VADs) provide continuous mechanical circulatory support during in- and out-of-hospital care. However, limitations of the external wearable components influence patient quality of life. There is insufficient understanding of the issues with such components that combines a holistic viewpoint from both human factors and user (including patient and caregiver) experience perspectives. This paper comprehensively details the issues with VAD wearable systems and proposes a way for human-centered design to bridge the gap, addressing such issues synergistically. Through the review the authors investigated: the user issues caused by wearable components of VADs, and how human factors issues correlate to the VAD user experience. A Boolean search (“ventricular assist” AND “human factors” AND “experience”) for peer-reviewed studies published between 2008 and 2018 returned 338 titles, with 35 relevant studies selected using a PRISMA process for inclusion in cross-study analysis and synthesis. This paper provides design recommendations for the issues found in the literature. Four key focus areas to inform the future design of VAD wearable components were identified—‘Power Supply’, ‘Wearability and Travel Freedom’, ‘The Female Experience’ and ‘Intuitive Handling’. Using design to drive innovation could result in VAD wearable components which better meet or exceed users’ quality of life goals.

Keywords

Human factors engineering Patient experience Human centered design Mechanical circulatory support Ventricular assist device Caregiver experience Wearable systems Design innovation Design considerations 

Notes

Acknowledgments

The authors would like to recognize the financial assistance provided by The Prince Charles Hospital Foundation (TM2017-04), the National Health and Medical Research Council Centre for Research Excellence (APP1079421/GNT1079421), The University of Sydney and Monash University. Shaun D. Gregory was supported by a Future Leader Fellowship (102062) from the National Heart Foundation of Australia. The authors would also like to acknowledge the assistance of Keum Hee (Kimmi) Ko.

Author Contributions

JLD, concept, draft, and data collection; EN, critical revision, approval of article; KS, critical revision, approval of article; SG, critical revision, approval of article; CW, critical revision, approval of article.

Conflict of interest

None of the authors has a financial relationship with a commercial entity that as an interest in the subject of the presented manuscript or other conflicts of interest to disclose.

Funding

The authors would like to recognize the financial assistance provided by the National Health and Medical Research Council Centre for Research Excellence (APP1079421/GNT1079421).

References

  1. 1.
    Abbate, A. J., and E. J. Bass. A formal methods approach to semiotic engineering. Int. J. Hum Comput Stud. 115:20–39, 2018.Google Scholar
  2. 2.
    Abbate, A. J., and E. J. Bass. A formal approach to connectibility affordances. IEEE Trans. Hum. Mach. Syst. 99:1–11, 2019.  https://doi.org/10.1109/thms.2018.2886265.CrossRefGoogle Scholar
  3. 3.
    Abbate, A. J., A. L. Throckmorton, and E. J. Bass. A formal task-analytic approach to medical device alarm troubleshooting instructions. IEEE Trans. Hum. Mach. Syst. 46:53–65, 2016.Google Scholar
  4. 4.
    Abshire, M., R. Prichard, M. Cajita, M. DiGiacomo, and C. D. Himmelfarb. Adaptation and coping in patients living with an LVAD: a metasynthesis. Hear. Lung J. Acute Crit. Care 45:397–405, 2016.Google Scholar
  5. 5.
    American National Standards Institute and the Association for the Advancement of Medical Instrumentation. ANSI/AAMI HE75:2009/(R)2018 Human factors engineering—design of medical devices, 2018.Google Scholar
  6. 6.
    Antaki, J. F. Insanity of left ventricular assist therapy: doing the same thing and expecting different results. Circ. Heart Fail. 4:680–681, 2011.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Barber, J., and G. Leslie. A simple education tool for ventricular assist device patients and their caregivers. J. Cardiovasc. Nurs. 30:E1–E10, 2015.PubMedGoogle Scholar
  8. 8.
    Barg, F. K., K. Kellom, T. Ziv, S. C. Hull, S. Suhail-Sindhu, and J. N. Kirkpatrick. LVAD-DT: culture of rescue and liminal experience in the treatment of heart failure. Am. J. Bioeth. 17:3–11, 2017.PubMedGoogle Scholar
  9. 9.
    Bartoli, C. R., and R. D. Dowling. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol. Clin. 29:559–582, 2011.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Belden, J. L., R. Grayson, and J. Barnes. Defining and Testing EMR Usability: Principles and Proposed Methods of EMR Usability Evaluation and Rating. Healthcare Information and Management Systems Society (HIMSS), 2009.Google Scholar
  11. 11.
    Bolton, M. L. Automatic validation and failure diagnosis of human-device interfaces using task analytic models and model checking. Comput. Math. Organ. Theory 19:288–312, 2013.Google Scholar
  12. 12.
    Braun, V., and V. Clarke. Using thematic analysis in psychology. Qual. Res. Psychol. 3:77–101, 2006.Google Scholar
  13. 13.
    Brouwers, C., K. Caliskan, N. de Jonge, D. A. J. M. Theuns, A. Constantinescu, Q.-R. Young, C. Cannon, J. Denollet, and S. S. Pedersen. A comparison of the health status and psychological distress of partners of patients with a left ventricular assist device versus an implantable cardioverter defibrillator: a preliminary study. Hear. Lung J. Acute Crit. Care 44:27–32, 2015.Google Scholar
  14. 14.
    Brown, T. Design thinking. Harv. Bus. Rev. 86:84, 2008.PubMedGoogle Scholar
  15. 15.
    Brown, T. Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation. New York: Harper Business, 2009.Google Scholar
  16. 16.
    Buck, H. G., K. Harkness, R. Wion, S. L. Carroll, T. Cosman, S. Kaasalainen, J. Kryworuchko, M. McGillion, S. O’Keefe-McCarthy, D. Sherifali, P. H. Strachan, and H. M. Arthur. Caregivers’ contributions to heart failure self-care: a systematic review. Eur. J. Cardiovasc. Nurs. 14:79–89, 2015.PubMedGoogle Scholar
  17. 17.
    Bunzel, B., K. Laederach-Hofmann, G. M. Wieselthaler, W. Roethy, and G. Drees. Posttraumatic stress disorder after implantation of a mechanical assist device followed by heart transplantation: evaluation of patients and partners. Transplant. Proc. 37:1365–1368, 2005.PubMedGoogle Scholar
  18. 18.
    Bunzel, B., K. Laederach-Hofmann, G. Wieselthaler, W. Roethy, and E. Wolner. Mechanical circulatory support as a bridge to heart transplantation: what remains? Long-term emotional sequelae in patients and spouses. J. Hear. Lung Transplant. 26:384–389, 2007.Google Scholar
  19. 19.
    Caro, M. A., J. L. Rosenthal, K. Kendall, L. Pozuelo, and M. C. Funk. What the psychiatrist needs to know about ventricular assist devices: a comprehensive review. Psychosomatics 57:229–237, 2016.PubMedGoogle Scholar
  20. 20.
    Casida, J. The lived experience of spouses of patients with a left ventricular assist device before heart transplantation. Am. J. Crit. Care 14:145–151, 2005.PubMedGoogle Scholar
  21. 21.
    Casida, J. M., L. Marcuccilli, R. M. Peters, and S. Wright. Lifestyle adjustments of adults with long-term implantable left ventricular assist devices: a phenomenologic inquiry. Hear. Lung J. Acute Crit. Care 40:511–520, 2011.Google Scholar
  22. 22.
    Chapman, E., J. Parameshwar, D. Jenkins, S. Large, and S. Tsui. Psychosocial issues for patients with ventricular assist devices: a qualitative pilot study. Am. J. Crit. Care 16:72–81, 2007.PubMedGoogle Scholar
  23. 23.
    Christensen, D. M., C. VanderPluym, J. Conway, A. Lorts, H. Buchholz, T. Schlöglhofer, J. Viericke, A. Stepanenko, F. Kauffman, and G. Sorenson. Outpatient Management: The Role of the VAD Coordinator and Remote Monitoring. Mechanical Circulatory Support in End-Stage Heart Failure, Cham: Springer, 2017, pp. 445–465.  https://doi.org/10.1007/978-3-319-43383-7_44.CrossRefGoogle Scholar
  24. 24.
    Daly, S. R., C. M. Seifert, S. Yilmaz, and R. Gonzalez. Comparing ideation techniques for beginning designers. J. Mech. Des. 138:101108, 2016.Google Scholar
  25. 25.
    De Bono, E. Lateral Thinking : A Textbook of Creativity. London: Penguin Books, 1990.Google Scholar
  26. 26.
    Department of Defense. Department of Defense Handbook for Human Engineering Guidelines, 1995.  https://doi.org/10.1093/milmed/147.11.943.PubMedGoogle Scholar
  27. 27.
    Department of Defense. MIL-STD-1472G Department of Defense Design Criteria Standard-Human Engineering, 2012. http://www.product-lifecycle-management.com/download/mil-std-1472f.pdf.
  28. 28.
    Dew, M. A., R. L. Kormos, S. Winowich, E. A. Stanford, L. Carozza, H. S. Borovetz, and B. P. Griffith. Human factors issues in ventricular assist device recipients and their family caregivers. ASAIO J. 46:367–373, 2000.PubMedGoogle Scholar
  29. 29.
    Feldmann, C., A. Chatterjee, A. Haverich, and J. D. Schmitto. Left Ventricular Assist Devices: A State of the Art Review. Cham: Springer, pp. 287–294, 2018.  https://doi.org/10.1007/5584_2018_145.CrossRefGoogle Scholar
  30. 30.
    U.S. Food & Drug Administration. Applying human factors and usability engineering to medical devices, 2016. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/applying-human-factors-and-usability-engineering-medical-devices.
  31. 31.
    U.S. Food & Drug Administration. Human factors (medical devices): human factors considerations, 2017. https://www.fda.gov/medicaldevices/deviceregulationandguidance/humanfactors/ucm124829.htm.
  32. 32.
    U.S. Food & Drug Administration. Human Factors and Medical Devices, 2018. https://www.fda.gov/medicaldevices/deviceregulationandguidance/humanfactors/.
  33. 33.
    Friedman, E., and M. McMahon. TO VAD OR NOT TO VAD: that is the question. improving the experience of receiving a ventricular assist device (VAD). Proc. Int. Symp. Hum. Factors Ergon. Heal. Care 3:238–245, 2014.Google Scholar
  34. 34.
    Geidl, L., Z. Deckert, P. Zrunek, R. Gottardi, F. Sterz, G. Wieselthaler, and H. Schima. Intuitive use and usability of ventricular assist device peripheral components in simulated emergency conditions. Artif. Organs 35:773–780, 2011.PubMedGoogle Scholar
  35. 35.
    Geidl, L., P. Zrunek, Z. Deckert, D. Zimpfer, S. Sandner, G. Wieselthaler, and H. Schima. Usability and safety of ventricular assist devices: human factors and design aspects. Artif. Organs 33:691–695, 2009.PubMedGoogle Scholar
  36. 36.
    Gemperle, F., C. Kasabach, J. Stivoric, M. Bauer, and R. Martin. Design for wearability. Int. Symp. Wearable Comput. Dig. Pap. 116–122:1998, 1998.Google Scholar
  37. 37.
    Giacomin, J. What is human centred design? Des. J. 17:606–623, 2014.Google Scholar
  38. 38.
    Hanke, J. S., J. Riebandt, M. Wahabzada, F. Nur, A. Wahabzada, G. Dogan, C. Feldmann, A. Haverich, A.-F. Popov, D. Zimpfer, and J. D. Schmitto. Driving after left ventricular assist device implantation. Artif. Organs 42:695–699, 2018.PubMedGoogle Scholar
  39. 39.
    Hasanain, B., A. D. Boyd, J. Edworthy, and M. L. Bolton. A formal approach to discovering simultaneous additive masking between auditory medical alarms. Appl. Ergon. 58:500–514, 2017.PubMedGoogle Scholar
  40. 40.
    Hong, Q. N., P. Pluye, M. Bujold, and M. Wassef. Convergent and sequential synthesis designs: implications for conducting and reporting systematic reviews of qualitative and quantitative evidence. Syst. Rev. 6:61, 2017.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Hwang, B., M. L. Luttik, K. Dracup, and T. Jaarsma. Family caregiving for patients with heart failure: types of care provided and gender differences. J. Card. Fail. 16:398–403, 2010.PubMedGoogle Scholar
  42. 42.
    International Electrotechnical Commission. IEC 60601-1-6:2010 Medical electrical equipment-Part 1-6: General requirements for basic safety and essential performance-collateral standard: usability, 2010.Google Scholar
  43. 43.
    International Organization for Standardization. ISO 9241-210:2010-Ergonomics of human-system interaction—Part 210: Human-centred design for interactive systems. Switzerland, 2010.Google Scholar
  44. 44.
    International Organization for Standardization. IEC 62366-1:2015-medical devices—Part 1: Application of usability engineering to medical device, 2015.Google Scholar
  45. 45.
    International Organization for Standardization. IEC/TR 62366-2:2016-Medical devices—Part 2: Guidance on the application of usability engineering to medical devices, 2016.Google Scholar
  46. 46.
    International Organization for Standardization. ISO 9241-11:2018 Ergonomics of human–system interaction—Part 11: Usability: definitions and concepts, 2018.Google Scholar
  47. 47.
    Jarvik, R. Infection resistant power cable system for medically implanted electric motors. Patent: US5904646, 1997.Google Scholar
  48. 48.
    Jarvik Heart, I. Post-auricular cable. Jarvik Heart Inc., 2018. https://www.jarvikheart.com/products/post-auricular-cable/.
  49. 49.
    Kato, N., T. Jaarsma, and T. Ben Gal. Learning self-care after left ventricular assist device implantation. Curr. Heart Fail. Rep. 11:290–298, 2014.PubMedGoogle Scholar
  50. 50.
    Kato, N. P., I. Okada, Y. Kagami, M. Endo, M. Hatano, M. Ono, T. Jaarsma, and K. Kinugawa. Quality of life of family caregivers of patients with a left ventricular assist device in Japan. J. Cardiol. 71:81–87, 2018.PubMedGoogle Scholar
  51. 51.
    Kimchi, J., B. Polivka, and J. S. Stevenson. Triangulation: Operational definitions. Nurs. Res. 40(6):364–366, 1991.PubMedGoogle Scholar
  52. 52.
    Kirklin, J. K., F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, J. B. Young, and D. C. Naftel. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J. Hear. Lung Transplant. 36:1080–1086, 2017.Google Scholar
  53. 53.
    Klack, L., T. Schmitz-Rode, W. Wilkowska, K. Kasugai, F. Heidrich, and M. Ziefle. Integrated home monitoring and compliance optimization for patients with mechanical circulatory support devices. Ann. Biomed. Eng. 39:2911–2921, 2011.PubMedGoogle Scholar
  54. 54.
    Kormos, R. L., M. McCall, A. Althouse, L. Lagazzi, R. Schaub, M. A. Kormos, J. A. Zaldonis, C. Sciortino, K. Lockard, N. Kuntz, E. Dunn, and J. J. Teuteberg. Left ventricular assist device malfunctions: it is more than just the pump. Circulation 136:1714–1725, 2017.PubMedGoogle Scholar
  55. 55.
    Kouprie, M., and F. S. Visser. A framework for empathy in design: stepping into and out of the user’s life. J. Eng. Des. 20:437–448, 2009.Google Scholar
  56. 56.
    Krippendorff, K. Intrinsic motivation and human-centred design. Theor. Issues Ergon. Sci. 5:43–72, 2004.Google Scholar
  57. 57.
    Kugler, C., D. Malehsa, E. Schrader, U. Tegtbur, E. Guetzlaff, A. Haverich, and M. Strueber. A multi-modal intervention in management of left ventricular assist device outpatients: dietary counselling, controlled exercise and psychosocial support. Eur. J. Cardio-Thoracic Surg. 42:1026–1032, 2012.Google Scholar
  58. 58.
    Lalonde, S. D., A. C. Alba, A. Rigobon, H. J. Ross, D. H. Delgado, F. Billia, M. Mcdonald, R. J. Cusimano, T. M. Yau, and V. Rao. Clinical differences between continuous flow ventricular assist devices: a comparison between HeartMate II and HeartWare HVAD 2013.  https://doi.org/10.1111/jocs.12158.CrossRefGoogle Scholar
  59. 59.
    Liberati, A., D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 62:e1–e34, 2009.PubMedGoogle Scholar
  60. 60.
    MacIver, J., and H. J. Ross. Quality of life and left ventricular assist device support. Circulation 126:866–874, 2012.PubMedGoogle Scholar
  61. 61.
    Magnussen, C., A. M. Bernhardt, F. M. Ojeda, F. M. Wagner, J. Gummert, T. M. M. H. de By, T. Krabatsch, P. Mohacsi, M. Rybczynski, D. Knappe, B. Sill, T. Deuse, S. Blankenberg, R. B. Schnabel, and H. Reichenspurner. Gender differences and outcomes in left ventricular assist device support: the European Registry for patients with mechanical circulatory support. J. Hear. Lung Transplant. 37:61–70, 2018.Google Scholar
  62. 62.
    Marcuccilli, L., and J. M. Casida. From insiders’ perspectives: adjusting to caregiving for patients with left ventricular assist devices. Prog. Transplant. 21:137–143, 2011.PubMedGoogle Scholar
  63. 63.
    Marcuccilli, L., and J. Casida. Overcoming alterations in body image imposed by the left ventricular assist device: a case report. Prog. Transplant. 22:212–216, 2012.PubMedGoogle Scholar
  64. 64.
    Marcuccilli, L., J. Casida, T. Bakas, and F. D. Pagani. Family caregivers’ inside perspectives: caring for an adult with a left ventricular assist device as a destination therapy. Prog. Transplant. 24:332–340, 2014.PubMedGoogle Scholar
  65. 65.
    Marcuccilli, L., J. Casida, and R. M. Peters. Modification of self-concept in patients with a left-ventricular assist device: an initial exploration. J. Clin. Nurs. 22:2456–2464, 2013.PubMedGoogle Scholar
  66. 66.
    Marcuccilli, L., J. Casida, R. M. Peters, and S. Wright. Sex and intimacy among patients with implantable left-ventricular assist devices. J. Cardiovasc. Nurs. 26:504–511, 2011.PubMedGoogle Scholar
  67. 67.
    Masci, P., Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. Formal verification of medical device user interfaces using PVS. In: Fundamental Approaches to Software Engineering. FASE 2014. Lecture Notes in Computer Science, Vol. 8411, edited by S. Gnesi, and A. Rensink. Berlin: Springer, 2014, pp. 200–214.  https://doi.org/10.1007/978-3-642-54804-8_14.CrossRefGoogle Scholar
  68. 68.
    Meyer, A. L., C. Kugler, D. Malehsa, A. Haverich, and M. Strueber. Patient satisfaction with the external equipment of implantable left ventricular assist devices. Artif. Organs 34:721–725, 2010.PubMedGoogle Scholar
  69. 69.
    Mirnig, A. G., A. Meschtscherjakov, D. Wurhofer, T. Meneweger, and M. Tscheligi. A Formal Analysis of the ISO 9241-210 Definition of User Experience. New York: ACM, 2015.  https://doi.org/10.1145/2702613.2732511.CrossRefGoogle Scholar
  70. 70.
    Moher, D., A. Liberati, J. Tetzlaff, D. G. Altman, and PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:b2535, 2009.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Overgaard, D., H. G. Kjeldgaard, and I. Egerod. Life in transition A qualitative study of the illness experience and vocational adjustment of patients with left ventricular assist device. J. Cardiovasc. Nurs. 27:394–402, 2012.PubMedGoogle Scholar
  72. 72.
    Pae, W. E., et al. Bethesda Conference: Conference for the Design of Clinical Trials to Study Circulatory Support Devices for Chronic Heart Failure. New York: Elsevier, 1998.Google Scholar
  73. 73.
    Pagani, F. D., K. D. Aaronson, R. Kormos, D. L. Mann, C. Spino, N. Jeffries, W. C. Taddei-Peters, D. M. Mancini, D. M. Mcnamara, K. L. Grady, J. Gorcsan, R. Petrucci, A. S. Anderson, H. A. Glick, M. A. Acker, J. E. Rame, D. J. Goldstein, S. V. Pamboukian, M. A. Miller, and J. T. Baldwin. The NHLBI REVIVE-IT study: understanding its discontinuation in the context of current left ventricular assist device therapy. J Hear. Lung Transpl. 35:1277–1283, 2016.Google Scholar
  74. 74.
    Pérez-García, A. M., S. Oliván, and R. Bover. Subjective well-being in heart failure patients: influence of coping and depressive symptoms. Int. J. Behav. Med. 21:258–265, 2014.PubMedGoogle Scholar
  75. 75.
    Petty, M., and L. Bauman. Psychosocial issues in ventricular assist device implantation and management. J. Thorac. Dis. 7:2181–2187, 2015.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Prinzing, A., U. Herold, A. Berkefeld, M. Krane, R. Lange, and B. Voss. Left ventricular assist devices-current state and perspectives. J. Thorac. Dis. 8:E660–E666, 2016.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Raymond, A. L., A. G. Kfoury, C. J. Bishop, E. S. Davis, K. M. Goebel, S. Stoker, C. H. Selzman, S. E. Clayson, H. Smith, C. G. Cowley, R. Alharethi, D. Budge, and B. B. Reid. Obesity and left ventricular assist device driveline exit site infection. ASAIO J. 56:57–60, 2010.PubMedGoogle Scholar
  78. 78.
    Sahle, B. W., A. J. Owen, M. P. Mutowo, H. Krum, and C. M. Reid. Prevalence of heart failure in Australia: a systematic review. BMC Cardiovasc. Disord. 16:32, 2016.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Saunders, M. M. The patient’s informal caregiver. Psychological, emotional, social and cognitive aspects of implantable cardiac devices, Cham: Springer, 2017, pp. 231–242.  https://doi.org/10.1007/978-3-319-55721-2_14.CrossRefGoogle Scholar
  80. 80.
    Savarese, G., and L. H. Lund. Global public health burden of heart failure. Card. Fail. Rev. 3:7–11, 2017.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Schima, H., T. Schlöglhofer, Z. Hartner, J. Horvat, and D. Zimpfer. Importance of linguistic details in alarm messages of ventricular assist devices. Int. J. Artif. Organs 36:1–4, 2013.Google Scholar
  82. 82.
    Schima, H., T. Schlöglhofer, R. zu Dohna, T. Drews, M. Morshuis, D. Roefe, J. D. Schmitto, M. Strüber, and D. Zimpfer. Usability of ventricular assist devices in daily experience: a multicenter study. Artif. Organs 38:751–760, 2014.PubMedGoogle Scholar
  83. 83.
    Schlöglhofer, T., and H. Schima. Wearable systems. In: Mechanical circulatory and respiratory support, edited by S. D. Gregory, M. C. Stevens, and J. F. Fraser. New York: Elsevier, 2018, pp. 691–721.  https://doi.org/10.1016/b978-0-12-810491-0.00022-9.CrossRefGoogle Scholar
  84. 84.
    Siegenthaler, M. P., J. Martin, K. Pernice, T. Doenst, S. Sorg, G. Trummer, O. Friesewinkel, and F. Beyersdorf. The Jarvik 2000 is associated with less infections than the HeartMate left ventricular assist device. Eur. J. Cardio-Thoracic Surg. 23:748–755, 2003.Google Scholar
  85. 85.
    Slaughter, M. S., J. G. Rogers, C. A. Milano, S. D. Russell, J. V. Conte, D. Feldman, B. Sun, A. J. Tatooles, R. M. Delgado, J. W. Long, T. C. Wozniak, W. Ghumman, D. J. Farrar, and O. H. Frazier. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361:2241–2251, 2009.PubMedGoogle Scholar
  86. 86.
    Standing, H. C., T. Rapley, G. A. MacGowan, and C. Exley. ‘Being’ a ventricular assist device recipient: a liminal existence. Soc. Sci. Med. 190:141–148, 2017.PubMedGoogle Scholar
  87. 87.
    Starling, R. C. Improved quantity and quality of life: a winning combination to treat advanced heart failure. J. Am. Coll. Cardiol. 55:1835–1836, 2010.PubMedGoogle Scholar
  88. 88.
    Swetz, K. M., A. H. Kamal, D. D. Matlock, A. M. Dose, L. S. Borkenhagen, A. K. Kimeu, S. M. Dunlay, and M. A. Feely. Preparedness planning before mechanical circulatory support: a “How-To” guide for palliative medicine clinicians. J. Pain Symptom Manage. 47:926–935.e6, 2014.PubMedGoogle Scholar
  89. 89.
    The World Health Organization (WHO), and Organización Nacional de Trasplantes (ONT). Organ Donation and Transplantation Activities, 2015 Report, 2015. http://www.transplant-observatory.org/.
  90. 90.
    Throckmorton, A. L., S. M. Patel-Raman, C. S. Fox, and E. J. Bass. Beyond the VAD: human factors engineering for mechanically assisted circulation in the 21st century. Artif. Organs 40:539–548, 2016.PubMedGoogle Scholar
  91. 91.
    Tigges-Limmer, K., Y. Brocks, Y. Winkler, S. S. Gissendanner, M. Morshuis, and J. F. Gummert. Mental health interventions during ventricular assist device therapy: a scoping review. Interact. Cardiovasc. Thorac. Surg. 2018.  https://doi.org/10.1093/icvts/ivy125.CrossRefPubMedGoogle Scholar
  92. 92.
    Vos, T., et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–1602, 2016.Google Scholar
  93. 93.
    Waters, B., A. Sample, J. Smith, and P. Bonde. Toward total implantability using free-range resonant electrical energy delivery system: achieving untethered ventricular assist device operation over large distances. Cardiol. Clin. 29:609–625, 2011.PubMedGoogle Scholar
  94. 94.
    Waters, B., J. Smith, and P. Bonde. Totally implantable LVAD: progress on portable wireless power delivery system and results of in-vivo testing. The Journal of Heart and Lung Transplantation 33(4):S3, 2014.Google Scholar
  95. 95.
    Wells, C. L. Physical therapist management of patients with ventricular assist devices: key considerations for the acute care physical therapist. Phys. Ther. 93:266–278, 2013.PubMedGoogle Scholar
  96. 96.
    Westaby, S., R. Jarvik, A. Freeland, D. Pigott, D. Robson, S. Saito, P. Catarino, and O. H. Frazier. Postauricular percutaneous power delivery for permanent mechanical circulatory support. J. Thorac. Cardiovasc. Surg. 123:977–983, 2002.PubMedGoogle Scholar
  97. 97.
    Zahabi, M., D. B. Kaber, and M. Swangnetr. Usability and safety in electronic medical records interface design. Hum Factors J Hum Factors Ergon Soc 57:805–834, 2015.Google Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.School of Architecture, Design and PlanningUniversity of SydneySydneyAustralia
  2. 2.Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourneAustralia
  3. 3.Baker Heart and Diabetes InstituteMelbourneAustralia

Personalised recommendations