Advertisement

Annals of Biomedical Engineering

, Volume 47, Issue 11, pp 2199–2212 | Cite as

Hip Fracture Discrimination Based on Statistical Multi-parametric Modeling (SMPM)

  • Julio Carballido-GamioEmail author
  • Aihong Yu
  • Ling Wang
  • Yongbin Su
  • Andrew J. Burghardt
  • Thomas F. Lang
  • Xiaoguang Cheng
Article

Abstract

Studies using quantitative computed tomography (QCT) and data-driven image analysis techniques have shown that trabecular and cortical volumetric bone mineral density (vBMD) can improve the hip fracture prediction of dual-energy X-ray absorptiometry areal BMD (aBMD). Here, we hypothesize that (1) QCT imaging features of shape, density and structure derived from data-driven image analysis techniques can improve the hip fracture discrimination of classification models based on mean femoral neck aBMD (Neck.aBMD), and (2) that data-driven cortical bone thickness (Ct.Th) features can improve the hip fracture discrimination of vBMD models. We tested our hypotheses using statistical multi-parametric modeling (SMPM) in a QCT study of acute hip fracture of 50 controls and 93 fragility fracture cases. SMPM was used to extract features of shape, vBMD, Ct.Th, cortical vBMD, and vBMD in a layer adjacent to the endosteal surface to develop hip fracture classification models with machine learning logistic LASSO. The performance of these classification models was evaluated in two aspects: (1) their hip fracture classification capability without Neck.aBMD, and (2) their capability to improve the hip fracture classification of the Neck.aBMD model. Assessments were done with 10-fold cross-validation, areas under the receiver operating characteristic curve (AUCs), differences of AUCs, and the integrated discrimination improvement (IDI) index. All LASSO models including SMPM-vBMD features, and the majority of models including SMPM-Ct.Th features performed significantly better than the Neck.aBMD model; and all SMPM features significantly improved the hip fracture discrimination of the Neck.aBMD model (Hypothesis 1). An interesting finding was that SMPM-features of vBMD also captured Ct.Th patterns, potentially explaining the superior classification performance of models based on SMPM-vBMD features (Hypothesis 2). Age, height and weight had a small impact on model performances, and the model of shape, vBMD and Ct.Th consistently yielded better performances than the Neck.aBMD models. Results of this study clearly support the relevance of bone density and quality on the assessment of hip fracture, and demonstrate their potential on patient and healthcare cost benefits.

Keywords

Quantitative computed tomography (QCT) Hip Fracture Statistical multi-parametric modeling (SMPM) Bone mineral density (BMD) Cortical bone thickness (Ct.Th) 

Notes

Acknowledgments

This work was supported by the NIH/NIAMS under grants R01AR068456 and R01AR064140. This study was also supported by grants from the National Natural Science Foundation of China (81071131), the Beijing Bureau of Health 215 Program (2013-3-033; 2009-2-03), Beijing Technology Foundation for Selected Overseas Chinese Scholar and Beijing Talents Fund (2015000021467), Capital Characteristic Clinic Project (Z141107002514072).

References

  1. 1.
    Allison, S. J., K. E. S. Poole, G. M. Treece, A. H. Gee, C. Tonkin, W. J. Rennie, J. P. Folland, G. D. Summers, and K. Brooke-Wavell. The influence of high-impact exercise on cortical and trabecular bone mineral content and 3D distribution across the proximal femur in older men: a randomized controlled unilateral intervention. J. Bone Miner. Res. 30(9):1709–1716, 2015.PubMedGoogle Scholar
  2. 2.
    Baker-LePain, J. C., K. R. Luker, J. A. Lynch, N. Parimi, M. C. Nevitt, and N. E. Lane. Active shape modeling of the hip in the prediction of incident hip fracture. J. Bone Miner. Res. 26(3):468–474, 2011.PubMedGoogle Scholar
  3. 3.
    Bauer, D. C., P. Garnero, J. P. Bilezikian, S. L. Greenspan, K. E. Ensrud, C. J. Rosen, L. Palermo, and D. M. Black. Short-term changes in bone turnover markers and bone mineral density response to parathyroid hormone in postmenopausal women with osteoporosis. J. Clin. Endocrinol. Metab. 91(4):1370–1375, 2006.PubMedGoogle Scholar
  4. 4.
    Berry, S. D., E. J. Samelson, M. J. Pencina, R. R. McLean, L. A. Cupples, K. E. Broe, and D. P. Kiel. Repeat bone mineral density screening and prediction of hip and major osteoporotic fracture. JAMA 310(12):1256–1262, 2013.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Black, D. M., M. L. Bouxsein, L. M. Marshall, S. R. Cummings, T. F. Lang, J. A. Cauley, K. E. Ensrud, C. M. Nielson, E. S. Orwoll, and G. Osteoporotic Fractures in Men Research. Proximal femoral structure and the prediction of hip fracture in men: a large prospective study using QCT. J. Bone Miner. Res. 23(8):1326–1333, 2008.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Blank, J. B., P. M. Cawthon, M. L. Carrion-Petersen, L. Harper, J. P. Johnson, E. Mitson, and R. R. Delay. Overview of recruitment for the osteoporotic fractures in men study (MrOS). Contemp. Clin. Trials 26(5):557–568, 2005.PubMedGoogle Scholar
  7. 7.
    Bousson, V. D., J. Adams, K. Engelke, M. Aout, M. Cohen-Solal, C. Bergot, D. Haguenauer, D. Goldberg, K. Champion, R. Aksouh, E. Vicaut, and J. D. Laredo. In vivo discrimination of hip fracture with quantitative computed tomography: results from the prospective European Femur Fracture Study (EFFECT). J. Bone Miner. Res. 26(4):881–893, 2011.PubMedGoogle Scholar
  8. 8.
    Bredbenner, T. L., R. L. Mason, L. M. Havill, E. S. Orwoll, D. P. Nicolella, and S. Osteoporotic Fractures in Men. Fracture risk predictions based on statistical shape and density modeling of the proximal femur. J. Bone Miner. Res. 29(9):2090–2100, 2014.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Burge, R., B. Dawson-Hughes, D. H. Solomon, J. B. Wong, A. King, and A. Tosteson. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J. Bone Miner. Res. 22(3):465–475, 2007.PubMedGoogle Scholar
  10. 10.
    Carballido-Gamio, J., S. Bonaretti, I. Saeed, R. Harnish, R. Recker, A. J. Burghardt, J. H. Keyak, T. Harris, S. Khosla, and T. F. Lang. Automatic multi-parametric quantification of the proximal femur with quantitative computed tomography. Quant. Imaging Med. Surg. 5(4):552–568, 2015.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton, 3rd, J. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Proximal femoral density distribution and structure in relation to age and hip fracture risk in women. J. Bone Miner. Res. 28(3):537–546, 2013.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Carballido-Gamio, J., R. Harnish, I. Saeed, T. Streeper, S. Sigurdsson, S. Amin, E. J. Atkinson, T. M. Therneau, K. Siggeirsdottir, X. Cheng, L. J. Melton, 3rd, J. H. Keyak, V. Gudnason, S. Khosla, T. B. Harris, and T. F. Lang. Structural patterns of the proximal femur in relation to age and hip fracture risk in women. Bone 57(1):290–299, 2013.PubMedGoogle Scholar
  13. 13.
    Carballido-Gamio, J., and D. P. Nicolella. Computational anatomy in the study of bone structure. Curr. Osteoporos Rep. 11(3):237–245, 2013.PubMedGoogle Scholar
  14. 14.
    Carballido-Gamio, J., A. Yu, L. Wang, S. Yongbin, T. F. Lang, and X. Cheng. Fracture risk estimation with statistical multi-parametric modeling. ASBMR Annual Meeting, 2016.Google Scholar
  15. 15.
    Cootes, T. F. and C. J. Taylor. Statistical models of appearance for medical image analysis and computer vision. Medical Imaging: 2001: Image Processing, Pts 1–3 2(27):236–248, 2001.Google Scholar
  16. 16.
    Cootes, T. F., C. J. Taylor, D. H. Cooper, and J. Graham. Active shape models—their training and application. Comput. Vis. Image Underst. 61(1):38–59, 1995.Google Scholar
  17. 17.
    Crabtree, N. J., H. Kroger, A. Martin, H. A. Pols, R. Lorenc, J. Nijs, J. J. Stepan, J. A. Falch, T. Miazgowski, S. Grazio, P. Raptou, J. Adams, A. Collings, K. T. Khaw, N. Rushton, M. Lunt, A. K. Dixon and J. Reeve. Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study. European Prospective Osteoporosis Study. Osteoporos Int. 13(1):48–54, 2002.PubMedGoogle Scholar
  18. 18.
    Dong, X. L. N., R. Pinninti, T. Lowe, P. Cussen, J. E. Ballard, D. Di Paolo, and M. Shirvaikar. Random field assessment of inhomogeneous bone mineral density from DXA scans can enhance the differentiation between postmenopausal women with and without hip fractures. J. Biomech. 48(6):1043–1051, 2015.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Eastell, R., T. Lang, S. Boonen, S. Cummings, P. D. Delmas, J. A. Cauley, Z. Horowitz, E. Kerzberg, G. Bianchi, D. Kendler, P. Leung, Z. Man, P. Mesenbrink, E. F. Eriksen, D. M. Black, and H. P. F. Trial. Effect of once-yearly zoledronic acid on the spine and hip as measured by quantitative computed tomography: results of the HORIZON Pivotal Fracture Trial. Osteoporos Int. 21(7):1277–1285, 2010.PubMedGoogle Scholar
  20. 20.
    Engelke, K., T. Fuerst, B. Dardzinski, J. Kornak, S. Ather, H. K. Genant, and A. de Papp. Odanacatib treatment affects trabecular and cortical bone in the femur of postmenopausal women: results of a two-year placebo-controlled trial. J. Bone Miner. Res. 30(1):30–38, 2015.PubMedGoogle Scholar
  21. 21.
    Engelke, K., T. Fuerst, G. Dasic, R. Y. Davies, and H. K. Genant. Regional distribution of spine and hip QCT BMD responses after one year of once-monthly ibandronate in postmenopausal osteoporosis. Bone 46(6):1626–1632, 2010.PubMedGoogle Scholar
  22. 22.
    Engelke, K., T. Lang, S. Khosla, L. Qin, P. Zysset, W. D. Leslie, J. A. Shepherd, and J. T. Schousboe. Clinical Use of Quantitative Computed Tomography (QCT) of the Hip in the Management of Osteoporosis in Adults: the 2015 ISCD Official Positions-Part I. J. Clin. Densitom. 18(3):338–358, 2015.PubMedGoogle Scholar
  23. 23.
    Genant, H. K., C. Libanati, K. Engelke, J. R. Zanchetta, A. Hoiseth, C. K. Yuen, S. Stonkus, M. A. Bolognese, E. Franek, T. Fuerst, H. S. Radcliffe, and M. R. McClung. Improvements in hip trabecular, subcortical, and cortical density and mass in postmenopausal women with osteoporosis treated with denosumab. Bone 56(2):482–488, 2013.PubMedGoogle Scholar
  24. 24.
    Goodyear, S. R., R. J. Barr, E. McCloskey, S. Alesci, R. M. Aspden, D. M. Reid, and J. S. Gregory. Can we improve the prediction of hip fracture by assessing bone structure using shape and appearance modelling? Bone 53(1):188–193, 2013.PubMedGoogle Scholar
  25. 25.
    Gregory, J. S., A. Stewart, P. E. Undrill, D. M. Reid, and R. M. Aspden. Bone shape, structure, and density as determinants of osteoporotic hip fracture: a pilot study investigating the combination of risk factors. Invest. Radiol. 40(9):591–597, 2005.PubMedGoogle Scholar
  26. 26.
    Gregory, J. S., D. Testi, A. Stewart, P. E. Undrill, D. M. Reid, and R. M. Aspden. A method for assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos. Int. 15(1):5–11, 2004.PubMedGoogle Scholar
  27. 27.
    Harris, T. B., L. J. Launer, G. Eiriksdottir, O. Kjartansson, P. V. Jonsson, G. Sigurdsson, G. Thorgeirsson, T. Aspelund, M. E. Garcia, M. F. Cotch, H. J. Hoffman, and V. Gudnason. Age, Gene/Environment Susceptibility-Reykjavik Study: multidisciplinary applied phenomics. Am. J. Epidemiol. 165(9):1076–1087, 2007.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Johannesdottir, F., T. Turmezei, and K. E. Poole. Cortical bone assessed with clinical computed tomography at the proximal femur. J. Bone Miner. Res. 29(4):771–783, 2014.PubMedGoogle Scholar
  29. 29.
    Keaveny, T. M., P. F. Hoffmann, M. Singh, L. Palermo, J. P. Bilezikian, S. L. Greenspan, and D. M. Black. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J. Bone Miner. Res. 23(12):1974–1982, 2008.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Keyak, J. H., S. Sigurdsson, G. Karlsdottir, D. Oskarsdottir, A. Sigmarsdottir, S. Zhao, J. Kornak, T. B. Harris, G. Sigurdsson, B. Y. Jonsson, K. Siggeirsdottir, G. Eiriksdottir, V. Gudnason, and T. F. Lang. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48(6):1239–1245, 2011.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Keyak, J. H., S. Sigurdsson, G. S. Karlsdottir, D. Oskarsdottir, A. Sigmarsdottir, J. Kornak, T. B. Harris, G. Sigurdsson, B. Y. Jonsson, K. Siggeirsdottir, G. Eiriksdottir, V. Gudnason, and T. F. Lang. Effect of finite element model loading condition on fracture risk assessment in men and women: the AGES-Reykjavik study. Bone 57(1):18–29, 2013.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lane, N. E., S. Sanchez, G. W. Modin, H. K. Genant, E. Pierini, and C. D. Arnaud. Bone mass continues to increase at the hip after parathyroid hormone treatment is discontinued in glucocorticoid-induced osteoporosis: results of a randomized controlled clinical trial. J. Bone Miner. Res. 15(5):944–951, 2000.PubMedGoogle Scholar
  33. 33.
    Lang, T. F., I. H. Saeed, T. Streeper, J. Carballido-Gamio, R. J. Harnish, L. A. Frassetto, S. M. Lee, J. D. Sibonga, J. H. Keyak, B. A. Spiering, C. M. Grodsinsky, J. J. Bloomberg, and P. R. Cavanagh. Spatial heterogeneity in the response of the proximal femur to two lower-body resistance exercise regimens. J. Bone Miner. Res. 29(6):1337–1345, 2014.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Leslie, W. D., P. S. Pahlavan, J. F. Tsang, L. M. Lix, and P. Manitoba Bone Density. Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos. Int 20(10):1767–1774, 2009.PubMedGoogle Scholar
  35. 35.
    Lewiecki, E. M., T. M. Keaveny, D. L. Kopperdahl, H. K. Genant, K. Engelke, T. Fuerst, A. Kivitz, R. Y. Davies, and L. A. Fitzpatrick. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 94(1):171–180, 2009.PubMedGoogle Scholar
  36. 36.
    Li, G. W., S. X. Chang, Z. Xu, Y. Chen, H. Bao, and X. Shi. Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skelet. Radiol. 42(2):195–201, 2013.Google Scholar
  37. 37.
    Li, W., J. Kornak, T. Harris, J. Keyak, C. Li, Y. Lu, X. Cheng, and T. Lang. Identify fracture-critical regions inside the proximal femur using statistical parametric mapping. Bone 44(4):596–602, 2009.PubMedGoogle Scholar
  38. 38.
    Orwoll, E., J. B. Blank, E. Barrett-Connor, J. Cauley, S. Cummings, K. Ensrud, C. Lewis, P. M. Cawthon, R. Marcus, L. M. Marshall, J. McGowan, K. Phipps, S. Sherman, M. L. Stefanick, and K. Stone. Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study—a large observational study of the determinants of fracture in older men. Contemp. Clin. Trials 26(5):569–585, 2005.PubMedGoogle Scholar
  39. 39.
    Poole, K. E., G. M. Treece, P. M. Mayhew, J. Vaculik, P. Dungl, M. Horak, J. J. Stepan, and A. H. Gee. Cortical thickness mapping to identify focal osteoporosis in patients with hip fracture. PLoS ONE 7(6):e38466, 2012.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Qian, J., T. Hastie, J. Friedman, R. Tibshirani and N. Simon. Glmnet for Matlab, 2013. http://www.stanford.edu/~hastie/glmnet_matlab/.
  41. 41.
    Schuler, B., K. D. Fritscher, V. Kuhn, F. Eckstein, T. M. Link, and R. Schubert. Assessment of the individual fracture risk of the proximal femur by using statistical appearance models. Med. Phys. 37(6):2560–2571, 2010.PubMedGoogle Scholar
  42. 42.
    Sellmeyer, D. E., D. M. Black, L. Palermo, S. Greenspan, K. Ensrud, J. Bilezikian, and C. J. Rosen. Hetereogeneity in skeletal response to full-length parathyroid hormone in the treatment of osteoporosis. Osteoporos. Int. 18(7):973–979, 2007.PubMedGoogle Scholar
  43. 43.
    Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc B. 58(1):267–288, 1996.Google Scholar
  44. 44.
    Treece, G. M., A. H. Gee, C. Tonkin, S. K. Ewing, P. M. Cawthon, D. M. Black, K. E. Poole, and S. Osteoporotic Fractures in Men. Predicting hip fracture type with cortical bone mapping (CBM) in the Osteoporotic Fractures in Men (MrOS) Study. J. Bone Miner. Res. 30(11):2067–2077, 2015.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Walker, M. D., I. Saeed, D. J. McMahon, J. Udesky, G. Liu, T. Lang, and J. P. Bilezikian. Volumetric bone mineral density at the spine and hip in Chinese American and White women. Osteoporos. Int. 23(10):2499–2506, 2012.PubMedGoogle Scholar
  46. 46.
    Whitmarsh, T., K. D. Fritscher, L. Humbert, L. M. Del Rio Barquero, T. Roth, C. Kammerlander, M. Blauth, R. Schubert, and A. F. Frangi. A statistical model of shape and bone mineral density distribution of the proximal femur for fracture risk assessment. Med. Image Comput. Comput. Assist. Interv. 14(Pt 2):393–400, 2011.PubMedGoogle Scholar
  47. 47.
    Wiener, J. M., and J. Tilly. Population ageing in the United States of America: implications for public programmes. Int. J. Epidemiol. 31(4):776–781, 2002.PubMedGoogle Scholar
  48. 48.
    Yang, L., W. J. M. Udall, E. V. McCloskey, and R. Eastell. Distribution of bone density and cortical thickness in the proximal femur and their association with hip fracture in postmenopausal women: a quantitative computed tomography study. Osteoporos. Int. 25(1):251–263, 2014.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 2019

Authors and Affiliations

  1. 1.Department of RadiologyUniversity of Colorado Anschutz Medical CampusAuroraUSA
  2. 2.Department of RadiologyBeijing Jishuitan HospitalBeijingChina
  3. 3.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations